
Automated testing of atomic instructions
(lr/sc) implementations in selfie

Luis Thiele

Table of Contents

● Revisiting selfie
○ The selfie System
○ Bump-Pointer Allocator
○ Processes vs. Threads
○ Load Reserved & Store Conditional

● Treiber-Stack Assignment
○ Treiber-Stack
○ Thread-Safe malloc
○ Old Assignment vs. New Assignment
○ Automated Tests

● Changes to selfie

2

Revisiting selfie

3

The selfie System

C*-Code Files

RISC-V Binary

RISC-V Assembler

Emulate

RISC-V Binary

RISC-V Assembler

selfie

github.com/cksystemsteaching/selfie

4

https://github.com/cksystemsteaching/selfie

Bump-Pointer Allocator

● Variable stores last allocated address
○ Addresses below value are in use
○ Addresses above value are free

● On malloc(8) Call:
○ Load value of bump-pointer
○ Add 8 to value
○ Syscall BRK to increase program break
○ Store new value of bump-pointer
○ Return new value

Stack

 malloc(8)

Heap

Data

Code

5

Processes vs. Threads

Processes:

● Independent Memory

System Calls:

● fork()
● wait(uint64_t* wstatus)
● exit(uint64_t exitcode)

Threads:

● Shared Memory (except Stack)

System Calls:

● pthread_create()
● pthread_join(uint64_t* wstatus)
● pthread_exit(uint64_t exitcode)

6

Load Reserved & Store Conditional (1)

● “Extended” Load & Store Instructions
● Load Reserved:

○ Load
○ Reservation on Address

● Store Conditional:
○ Condition: Reservation on Address

■ True: Store
■ False: No Store, Mark Unsuccessful

7

Load Reserved & Store Conditional (2)

Load:

● ld rd,imm(rs1)
○ rd = memory[rs1 + imm]

Store:

● sd rs2,imm(rs1)
○ memory[rs1 + imm] = rs2

Load Reserved:

● lr.d rd,(rs1)
○ rd = memory[rs1]

Store Conditional:

● sc.d rd,rs2,(rs1)
○ SUCCESS: memory[rs1] = rs2
○ SUCCESS: rd = 0
○ FAILURE: rd = 1

8

Load Reserved & Store Conditional (3)

“LR-SC Loop”:

1. do {
2. value = lr(address);
3. // edit value here
4. } while (sc(address, value));
5. // sc returns 1 if unsuccessful

● Shared Memory Affected
○ Threads!

● Make Code Thread-Safe

● Threads:
○ Thread A
○ Thread B

● Execution:
○ lr
○ sc
○ lr
○ sc

● Interleaved Execution:
○ lr
○ lr
○ sc
○ sc
○ lr
○ sc

9

Treiber-Stack Assignment

10
Half Time!

Treiber-Stack

● Thread-Shared Stack
● Machine Instructions Only

○ No System Calls!
● Heap Memory

○ Uses malloc
○ Thus uses system call BRK

● Macros:
● void init_stack()
● void push(uint64_t value)
● uint64_t pop()

11

Thread-Safe malloc (1)

● “Old” malloc(8) Call:
○ LD value of bump-pointer
○ Add 8 to value
○ Syscall BRK to increase program break
○ SD new value of bump-pointer
○ Return new value

● Issues:
○ Not thread-safe
○ Syscalls force context switches!

● “New” malloc(8) Call:
○ LR value of bump-pointer
○ Add 8 to value
○ Syscall BRK to increase program break
○ SC new value of bump-pointer
○ SUCCESS: Return new value
○ FAILURE: Jump back to LR

● Short version:
○ LD / LR
○ BRK
○ SD / SC

12

Thread-Safe malloc (2)

Code:

1. pthread_create();
2. malloc(8);

● Old malloc:
○ LD
○ BRK
○ LD
○ BRK
○ SD
○ SD

● New malloc:
○ LR
○ BRK
○ LR
○ BRK
○ SC
○ LR
○ BRK
○ SC
○ LR
○ BRK
○ SC
○ LR
○ BRK
○ ...

13

Old Assignment vs. New Assignment

Old Assignment:

● treiber-stack
○ Implement lr & sc
○ Implement treiber-stack

New Assignment(s):

● threadsafe-malloc
○ Implement lr & sc
○ Make malloc thread-safe
○ No context switches on malloc

● treiber-stack
○ Implement treiber-stack
○ Make treiber-stack thread-safe

14

Automated Tests (1)

No-Context-Switch malloc Test:

● Easy solution:
○ Make sure Thread A runs first
○ Thread A calls malloc
○ Thread A prints eg. “Hello”
○ Thread B prints eg. “World”

● Success:
○ malloc did not force a switch
○ “Hello World”

● Failure:
○ “World Hello”

1. pid = pthread_create();
2. if (pid == 0) {
3. // child
4. child = 1;
5. malloc(8);
6. write(1, “Hello ”, 8);
7. } else {
8. // parent
9. while (child == 0)
10. wait((uint64_t*) 0);
11. write(1, “World ”, 8);
12. }

15

Automated Tests (2)

LR & SC Semantics Test:

● Requirements:
○ LR coroutine (returns value)
○ SC coroutine (returns 1 on FAILURE)

● Solution:
○ Interleaved execution
○ 2nd SC must mark failure
○ 1st SC decides final value

1. uint64_t lr(uint64_t address);
2. uint64_t sc(uint64_t address,
3. uint64_t value);

1. address = malloc(8);
2. *address = 7;
3. lr(address);
4. // force switch
5. lr(address);
6. if (sc(address, 42))
7. return 7;
8. pthread_wait(status);
9. // switch
10. c = sc(address, 7);
11. pthread_exit(c);
12. // switch
13. return *status * *address;

16

Automated Tests (3)

Thread-Safe malloc Test:

● Force context switch between LR & SC
○ Context switch by timeout

● Idea:
○ Repeat useless loop
○ malloc just before switch by timeout

● Solution:
○ Thread A measures endless loop
○ Thread B stops endless loop
○ proceed as explained…
○ Child may force switch by pthread_wait

● Success:
○ Different addresses by malloc

1. zero = 0;
2. loop = 1;
3. while (zero < loop)
4. counter = counter + 1;
5. // switch
6. loop = 0;
7. // force switch
8. i = 2;
9. while (i < counter);
10. i = i + 1;
11. malloc(8);
12. // switch
13. malloc(8);

17

Automated Tests (4)

Thread-Safe Treiber-Stack Test:

● “
○ “

● “
○ “
○ push/pop just before switch by timeout

● “
○ “
○ “
○ “

● “
○ {push’d} = {pop’d}

(overwrites, detached head…)

1. zero = 0;
2. loop = 1;
3. while (zero < loop)
4. counter = counter + 1;
5. // switch
6. loop = 0;
7. // force switch
8. i = 2;
9. while (i < counter);
10. i = i + 1;
11. push(8);
12. // switch
13. push(8);

18

Changes to selfie

19

Changes to selfie

● Improve github actions
○ No more running out of quota
○ Private repo: Only run on main branch and only linux
○ Online dispatcher

● New assignments
○ logical-and-or-not (boolean)
○ lazy-evaluation
○ (threadsafe-malloc , treiber-stack)

● Restructure code
○ Array & Struct assignments a lot easier
○ Grammar also restructured

20

