BACHELOR’S THESIS

Automated Testing of Atomic
Instruction (LR/SC)
Implementations in Selfie

by

Luis THIELE

submitted in partial fulfillment of the requirements
for the degree of BACHELOR OF SCIENCE
in INFORMATICS

Department of Computer Science
Paris Lodron Universitat Salzburg
Salzburg, Austria

supervised by

Univ.-Prof. Dipl.-Inform. Dr.-Ing. CHRISTOPH KIRSCH

December, 2022

Abstract

The selfie system is an educational self-compiling C* to RISC-U com-
piler and self-executing RISC-U emulator (C* is a subset of C and RISC-U
is a subset of RISC-V). It contains an autograder that is written in python
and considers source code submitted by students and runs tests against it.
One of the assignments requires students to extend the selfie system such
that the compiler supports the Treiber stack - a concurrent thread-safe
and lock-free stack. This Treiber stack must be implemented using the
atomic LR (load-reserved) and SC (store-conditional) instructions. They
must also be implemented to be supported by both the compiler and the
emulator.

This thesis is about extending the autograder to grade an assignment
called treiber-stack where students must implement the Treiber stack
using the atomic instructions LR and SC. The primary challenge of the new
tests added to the autograder was about forcing specific interleavings of
LR and SC run by the emulator the students extended. Some interleavings
could be forced directly by the source code of the run test but some could
only be forced by having the thread scheduler timeout and force a switch
of the thread that is run. A timeout happens when the thread has run
the set maximum amount of instructions sequentially without there ever
being a switch to another thread in between.

Additionally, this thesis also describes the correct implementations
of the LR and SC instructions in the emulator and a correct implemen-
tation of the Treiber stack in order to pass the entirety of the auto-
graded treiber—-stack assignment. All prerequesite requirements are
also explained, namely a correct implementation of support for threads
(threads assignment), as well as any concepts and details about the
emulator one must understand such as paging or system calls.

Contents

1 Introduction
1.1 selfie e
1.2 Systemcalls
1.3 malloc () . . . o i e e e
1.4 Paging

2 Assignments
2.1 Prerequisites: Processes and threads
2.1.1 processes assignment
2.1.2 fork-wait and fork-wait—exit assignments
2.1.3 threads assignment
2.2 threadsafe-malloc assignment
2.2.1 LR and SCinstructions
2.2.2 malloc() livelocks
2.3 treiber-stack assignment

3 Implementation
3.1 threads assignment implementation
3.2 threadsafe-malloc assignment implementation
3.3 treiber-stack assignment implementation

4 Grading

4.1 threadsafe-malloc assignment grading
4.1.1 load-reserved.c and store-conditional.c
4.1.2 1lr-sc-interleaved.c
4.1.3 no-switch-malloC.C v v v v v v i v v
4.1.4 threadsafe-malloC.C . . v v v v v v v v v v v i

4.2 treiber-stack assignment grading
4.2.1 stack-push.c e
4.2.2 StaCK—POP.C .« v v v vt i e e

5 Changes to selfie
5.1 logical-and-or-not assignment
5.2 lazy-evaluation assignment
5.3 Changes to the grader
5.4 Changes to GitHub actions
5.5 Code restructuring o o

6 References

A Grading tests (C* Code)
A.1 threadsafe-malloc assignment tests
A.1.1 load-reserved.co
A.1.2 store-conditional.c
A.13 lr-sc-interleaved.c

S UL O

—
O O © © oo oo o

—_

A.14 no-switch-malloc.c.
A.1.5 threadsafe-mallocC.C v« v v ...
A.2 treiber-stack assignment tests
A.2.1 stack-push.c
A.2.2 stack-pop.c

[C* Code J [RISC-U Binary] :’ RISC-U Assembler !

(selfie)

[emulate] [RISC-U Binary J [RISC-U Assembler J

Figure 1: Capabilities of the selfie system.

1 Introduction

The selfie system is an eduactional self-compiling C* to RISC-U compiler and
a self-executing RISC-U emulator (C* is a subset of C and RISC-U is a subset
of RISC-V). To pass different classes students must extend selfie with certain
features and then test their implementations using an autograder which comes
as part of the selfie system.

This thesis describes the extension of the autograder with new tests such that
implementations of a Treiber stack - a concurrent thread-safe and lock-free stack
- in the selfie system are being tested. This Treiber stack must be implemented
by using the atomic instructions LR (load-reserved) and SC (store-conditional)
which are also to be implemented and are being tested by the new grading
tests. Using these atomic instructions helps avoid the “aba” problem that would
otherwise occur by using compare-and-swap instructions instead.

The automated grader already included the treiber—stack assignment and
tests for a Treiber stack implementation. This thesis will go into detail on how
this assignment was split into two different assignments (treiber-stack and
threadsafe-malloc) and how it was greatly extended and improved upon.

Subsequently, the prerequesites and tasks of these assignments are explained
followed by what a correct implementation might look like and what the chal-
lenges are. In the end, all the grading tests are explained in detail with emphasis
on what the problems are and what the idea behind each and every test is but
also not leaving out an actual explanation of their semantics.

1.1 selfie

The selfie system primarily serves as an educational software for students for
classes of compilers, systems, and emulators [1]. It is written in C* which is a
subset of the programming language C and can compile C* code into RISC-U
binaries - a subset of RISC-V - and emulate such binaries among other things
(Figure 1 - making selfie accept RISC-U assembler code is a required student

‘$./selfie —-c selfie.c —m 2 -c some_code.c -m 1

Figure 2: Running code on selfie running on selfie.

assignment). The system comes with a set of assignments for students which
require them to extend it in different ways ranging from adding different syntax
to the compiler to introducing threads to the emulator which otherwise only
executes code as a single process.

The emulator of selfie, called Mipster, runs on a fetch-decode-execute loop. First
the instruction the program counter is pointing to is fetched, then it is decoded
from it’s binary format, followed by it being executed. The execution of an
instruction comes with an increase (or change) of the program counter and thus
the next fetch will be done at a different address.

Testing and grading of assignment submissions is done by an automated grader
written in Python that comes with the system. This grader usually runs a
program written in C*, but possibly including new syntax the student is required
to add support for, on top of Mipster and then checks and matches the output
to the expected output. The grader can also test RISC-U binaries for new
instructions among other things.

Selfie allows you to emulate RISC-U binaries on x86 hardware. You compile
selfie into an x86 binary (bootstrapping) and then run it passing your RISC-U
binary as argument for emulation. You can also “stack” another selfie instance
on the emulator first and then make the later emulate your binary (Figure 2).

1.2 System calls

System calls in selfie are handled by the emulator. They are initiated by the
ECALL instruction. The emulator then looks up the value in the REG_A7 register
which represents the syscall to be executed. Then the appropriate syscall is
emulated. This of course means that the fetch-decode-execute loop is broken
and then restarted again. Supported system calls include exit, read, write,
open, and brk (increase program break).

1.3 malloc()

Selfie’s memory allocation system is implemented as bump-pointer allocator. A
pointer stores the last allocated address and whenever new memory is allocated
the pointer is increased (“bumped”) by the size of the newly required memory
and the new pointer is returned to the malloc () call. It is trivial to see
that used memory addresses are lower than the current bump-pointer while free
memory addresses are above said pointer.

Any memory allocated by malloc () of course persists and as such is not allo-
cated in the stack but rather in the heap segment. Therefore the bump-pointer

| Virtual address space | | Physical address space |

4gb max
| 4kb page ‘ ’ 4kb page ‘ ‘
4kb page 4kb page
; 4kb page } { 4kb page }
’ 4kb page ‘ ’ 4kb page ‘
’ 4kb page ’ 4kb page ‘
0 0

Figure 3: Address look-up involving paging.

also represents the top of the current heap segment, the program break. So
whenever the bump-pointer is increased the program break must be adjusted
as well. As mentioned, this is accomplished by the brk system call which is
integrated into any malloc () call.

To go further into detail, malloc () is written as an instructions macro. Pre-
defined instructions are emitted, which include LD (load the bump-pointer),
ECALL (the brk system call), and SD (store the increased bump-pointer) in
this order. Other predefined methods may be implemented as pure system call.

1.4 Paging

The memory management of Mipster follows the concept of paging. The virtual
address space is divided into chunks with each of those chunks mapped onto a
physical address page where all content is stored. Of course, the actual memory
doesnt have to be ordered according to their virtual addresses. This concept is
demonstrated in Figure 3. The arrow represents an address look-up.

Whenever there is an attempt at loading from or storing at an address (virtual
address) that has not been mapped yet, Mipster issues a page fault. This
is immediately handled by allocating a physical page and then mapping the
virtual address to it. The mappings are stored in a table.

Otherwise, if said address has already been mapped there is an entry in the
table already and Mipster applies it to the address and looks up the contents
at the physical address.

Compiler Assignments:

|- hex-literal

|- bitwise-shift-compilation
| |- bitwise-shift—-execution
|- bitwise-and-or-not

|- array

| |- array-multidimensional
|- struct-declaration

| |- struct—-execution

|- for-loop

|- logical-and-or—-not

| |- lazy-evaluation

Figure 4: A list of assignments involving the compiler construction class.

Systems Assignments:

|- assembler-parser

| |- self-assembler

|- processes

| |- fork—-wait

| |- fork-wait-exit

|- threads

| |- threadsafe-malloc
| | |- treiber-stack

|
|
|
|
- lock

Figure 5: A list of assignments involving the systems class.

2 Assignments

Students have to finish different assignments which require them to extend the
selfie system. These can be dependent on one another, with later assignments
being dependent on earlier ones. In this section the prerequesite tasks are going
to be explained as well as the newly added ones as part of the project of this
thesis.

These assignments are split into different groups and can depend on one another
as shown in Figures 4 and 5.

2.1 Prerequisites: Processes and threads

This sub-section will explain all the assignments that are required for those
implemented by this project.

2.1.1 processes assignment

The selfie system introduces an assignment called processes. This assignment
requires students to implement a process scheduler and to add an execution flag
with which a code is run multiple times in said scheduler, instead of only once.
The process structure here exists as multiple different processes all started at
the same time and running independently. If one of them exits so does Mipster.

Context switching is already implemented in selfie. Every fetch-decode-execute
loop is forcibly broken after a set amount of instructions. Additionally, system
calls also break said loop and as such force a context switch. This side effect
of system calls is in fact even expected as the automated grading is testing for
this exact phenomenon.

2.1.2 fork-wait and fork-wait-exit assignments

That assignment is later built on by the fork-wait and fork-wait-exit
assignments. These now require the implementation of the fork () and wait ()
system calls and the extension of the exit () system call. This now allows for
processes to be created and started during code execution (instead of only at
the beginning) and comes with a strict parent-child process structure where the
exit code of the child can be retrieved by the parent. Additionally, different
processes can now follow different code paths (eg. a condition being fulfilled
for the parent but not for the child process resulting in different code being
executed).

2.1.3 threads assignment

Finally, as a last prerequesite assignment, the threads assignment requires
the existing process structure to be extended to support threads. Threads
are different because they share all heap memory (heap, code, and data seg-
ment to be precise). The previously mentioned system calls, fork (), wait (),

lr.d | rd = memory[rsl];
reserve (pid, rsl);

pc = pc + 4;

sc.d | IF is_reserved(pid, rsl)
THEN memory[rsl] = rs2, rd = 0;
ELSE rd = 1;

pc = pc + 4;

Figure 6: The semantics of the LR and SC instructions.

31 27 26 25 24 20 19 15 14 12 1 7 6 0
’ functb ‘ aq ‘ rl ‘ rs2 ‘ rsl ‘ funct3 ‘ rd ‘ opcode
LR ordering 0 addr | width | dest AMO

SC ordering srC addr | width | dest AMO

Figure 7: The encoding of the AMO instructions LR and SC [2].

and exit () also need to be “mirrored” for threads in pthread_create (),
pthread_join (), and pthread_exit ().

2.2 threadsafe-malloc assignment

The threadsafe-malloc assignment requires you to make any malloc ()
call thread-safe, by replacing the LD and SD instructions with the atomic LR
and SC instructions which are to be implemented.

2.2.1 LR and SC instructions

As demonstrated in Figure 6, the load-reserved (LR) instruction loads a value
from a given address and registers a registration on said address with the thread
that executed the instruction. If another thread executes LR on the same ad-
dress, this reservation is overridden. The encoding of these instructions is shown
in Figure 7.

This reservation is looked up when store-conditional (SC) is called. If and only
if the thread calling this instruction was also the one that last reserved the
address, then the result is not flagged as failure and the value is stored at said
address. Otherwise, the value is not stored and the result flagged as failure.

These instructions now allow secure loading and storing of values in a multi-
threaded environment. First the value is loaded (LR), then it is edited, and
finally it is stored (SC). If the store-conditional fails, load the value again and
repeat everything until it does not fail. malloc () must be changed to adhere
to this structure.

| thread 1 | | thread 2 |

Figure 8: malloc () livelock caused by context switches.

2.2.2 malloc() livelocks

Additionally, the malloc () call which includes the brk system call must be
changed in such a way that the fetch-decode-execute loop is not broken anymore.
If this is not done, multiple threads calling the new LR/SC-based malloc ()
can cause a livelock as shown in Figure 8.

Let us assume the main () method only consists of a pthread_create () call,
followed by amalloc () call, so basically just 2 threads both callingmalloc ().
Thread 1 as such executes LR, followed by the system call brk, followed by SC.
However, before the store-conditional is actually executed there is a context
switch happening because of the system call. Now Thread 2 calls LR, followed
by the brk system call. Back to thread 1 which now gets to execute SC. This
store-conditional fails, however, as thread 2 currently has a reservation on the
address of the bump-pointer. So it repeats LR and then calls brk. Now thread
2 attempts SC but also fails, so it repeats as well.

Finally, this assignment also requires you to implement the methods 1r () and
sc () with the former using the LR instruction and returning the value at the
given address, and the later using SC and storing the given value at the given
address and returning the failure-flag. These methods are to be implemented as
macros, not system calls, meaning that on compilation no ECALL instruction is
to be emitted.

2.3 treiber-stack assignment

The treiber-stack assignment requires you to implement the native meth-
ods init_stack (), push (), and pop (). Again, these are to be implemented
as macros, not system calls. The push () method pushes a given value on
to the stack and pop () returns them again following the LIFO principle.

10

init_stack () is called once first, before the other two, to do any required ini-
tialization. These methods must be implemented thread-safe so that detached
heads are fully avoided.

Formerly, this assignment also required you to implement all tasks of the
threadsafe-malloc assignment (the later did not exist) with the exception
of specifically having to make malloc () not force context switches. It is also
worth mentioning that the livelock problem has more solutions but the one
explained is deemed to be the most solid one.

3 Implementation

This chapter will dive into more specifics about implementations used to ac-
complish the tasks of all assignments. There will be no practical code shown.
However, all the principles used will be explained in depth.

3.1 threads assignment implementation

The most difficult part of this assignment is the shared heap-memory of threads.
The creation of new contexts and the new methods are trivial and will not be
explained.

One approach to implement the heap-memory sharing of threads is by mapping
their virtual pages to the same physical pages. Assume there is a thread A and a
thread B both having shared heap-memory. The value of heap-memory address
x would be stored on a single physical page with two different virtual pages (one
of A and one of B) being mapped on to it.

The easiest way to accomplish this is by immediately mapping a physical page
to all threads instead of only one as shown in Figure 9:

e Assume thread A stores a value at a heap-address that has not been
mapped before. A page fault happens, so thread A now creates a new
virtual page and maps it to a new physical page which contains the value.
All other threads now also create a new virtual page and map it onto the
same physical page and therefore have the same value at the same virtual
address. Overriding the value modifies the physical page which reflects
the change for all threads since they all translate to said page.

e Assume thread A stores a value at a heap-address that has already been
mapped. The address is translated to the physical page and stored /overridden
there. Once again, since the value is modified in the physical page it is
reflected to all other threads.

Of course, the program break must also be changed for all threads not only a
single one, and whenever a thread creates a new child thread all existing virtual
pages must be created and mapped for the child.

11

1 void do_map_page (uint64_t+ thrd, uint64_t vpage, uinté64_t

— ppage) {
2 // map the page and do everything required
3 //
4
5 // now "trickle down" to all child threads
6 if (is_heap_page (vpage)) {
7 thrd = get_thread_child(thrd);
8
9 while (thrd != (uint64_tx) 0) {
10 do_map_page (thrd, vpage, ppage);
11 thrd = get_thread_sibling(thrd);

16 void map_page (uint64_tx thrd, uint64_t vpage, uint64_t

— ppage) |
17 if (is_heap_page (vpage))
18 while (get_thread_parent (thrd) != (uint64_tx) 0)
19 thrd = get_thread_parent (thrd);
20
21 do_map_page (thrd, vpage, ppage);

22 }

Figure 9: Example algorithm to keep mapped pages synchronized across threads.

12

3.2 threadsafe-malloc assignment implementation

First the new LR and SC instructions must be implemented. These mirror the
existing LD and SD instructions to a large part. Apart from the difference in
semantics, the primary addition to be implemented here are the new semantics
involving reservations. Threads all have a unique id which can be used for
marking reservations. These reservations must be set when emulating LR and
checked when emulating SC. The ideal data structure for this seems to be a
linked list.

The LD and SD instructions of malloc () must be replaced by the newly im-
plemented LR and SC instructions. The structure must be extended so that
whenever SC failes the program counter jumps back to LR. One should also
adapt the gc_brk system call which replaces brk whenever the garbage collec-
tor is enabled. This call skips a few instructions of malloc () and the amount of
instructions skipped must be increased to account for the thread-safe extension.

Additionally, malloc () may not force context switches anymore. By default,
every system call returns a EXIT/DONOTEXIT flag and the emulator either
exits or switches context depending on this flag. Ideally, this concept is changed
so that every system call makes the emulator either EXIT, SWITCH (context
switch), or STAY (do not switch context). Of course, the scheduler must also
be adapted for this change.

Finally, one must also implement the native 1r and sc methods. These will
not be explained as they are trivial.

3.3 treiber-stack assignment implementation

For this assignment a new variable must be introduced which always points at
the head of the stack. The whole concept of this native variable is already imple-
mented for the bump-pointer allocator (variable “_bump”) and must essentially
be copied. This is the only way to do it because the new variable must be in
the heap memory as all Treiber stack methods are supposed to be macros and
not system calls. Assume the name of this new variable is _head.

To avoid any confusion in the following paragraphs, “stack” refers the actual
stack-memory of the thread accessed with REG_SP, and “Treiber stack” refers
to the stack accessed by the three methods which must be implemented for this
assignment.

For the init_stack () method all that needs to be done is resetting _head to
0. This can be done with a single SD instruction followed by JALR, of course.

The push () method is the most difficult to do. It requires the parameter (the
value pushed) to be gathered from the stack and temporarily stored in some
register. Next malloc () must be called (jumped to) with 16 as parameter
(ADDI 16 into a register and then move it onto the stack). This is done to
allocate a new Treiber stack entry with two values: A pointer to the previous

13

entry (-head points to it) and the pushed value itself. After the return from
malloc () the pointer must be gathered from the stack and those two values
must be stored at the returned address. Finally, ‘head must point to the address
of the new Treiber stack and the whole macro must obviously end with JALR.

To implement pop (), you first load the value of _head to get the address of
the top Treiber stack entry. Move the value of this entry into REG_AQ for the
return and then set _head to the Treiber stack entry this entry points to. End
with JALR again.

To mention this specifically, push () and pop () require loading and storing
of _head. These methods must also be threadsafe, however. And as such, this
must be done using the LR and SC instructions. A critical section lies between
these two instructions and is to be repeated on failure. The critical section of
push () is setting the pointer of the newly allocated entry to the loaded value.
The critical section of pop () is gathering the the address of the entry the top
entry (loaded value) points to.

4 Grading

This section will go through the various tests created to automatically test
students’ assignment submissions. Some of these tests are very simple and
straight forward and some are more complicated. The code of all test files can
be found in the appendix.

The grader is a program written in Python and run with an assignment as
parameter. To test the assignment implementation of a student it compiles
the student’s modified selfie system and then compiles or emulates certain pre-
written C* files on it usually checking the output or return code for a specific
pattern or value. If this is not found or if this compilation or emulation fails or
throws any errors the test failed.

4.1 threadsafe-malloc assignment grading

The load-reserved.c and store—-conditional.c tests already existed
as part of the old threadsafe-malloc assignment but will be explained
nevertheless. This assignment expects all systems calls with the exception of
malloc () to still force context switches.

To pass this assignment malloc () must be made fully thread-safe: If two
different threads call malloc () at the same time there are no issues as if the
calls happen sequentally and with no effects depending on the interleaving of
their actual machine instructions.

4.1.1 load-reserved.c and store-conditional.c

First, we must make sure that the new LR and SC instructions are emitted
properly with the right format. The new native 1r () and sc () methods

14

must also compile and emit said instructions. This is accomplished by the
load-reserved.c and store-conditional.c tests.

These each only contain one instruction which is a call of the native 1r () or
sc () method. The semantics are not tested but rather the point of these tests
is to force the selfie system to emit the new atomic instruction when compiling
these tests and creating the RISC-U binaries containing them. The grader then
searches these binaries for the correct format (AMO) of these instructions. If
they are not found the tests fail. If the native methods do not compile the
grader, of course, also fails.

4.1.2 lr-sc-interleaved.c

Next, we must test the actual semantics of the LR and SC instructions. The SC
instruction must fail if the thread calling it was not the last one to call LR on
the same address. This means that the failure-flag is set to codl and that the
value at said address is not overridden. Otherwise, the opposite must happen,
of course. This is done by the 1r-sc-interleaved.c test.

Initially, a value is stored at an address and then two threads are created (parent
and child). The child thread is running first and calls 1r () on said address
followed by a context switch. The parent thread now also calls 1r () on the same
address and checks the value. If the value is incorrect the test fails. Otherwise
the parent calls sc () and stores a new value (still the same address). A context
switch is forced and the child now also calls sc () overriding the value the
parent just stored. If the semantics are correct this override should fail. The
flag whether or not it did fail is returned by the child (it terminates). Finally, he
parent fetches this flag and validates that the sc () call of the child has failed
by both checking this flag and checking the value at the used address. The test
returns the value 42 only if the test did not fail and the grader checks this value.

4.1.3 no-switch-malloc.c

The no-switch-malloc.c test simply validates if a malloc () call still
forces a context switch. This may not happen for the test to pass.

Again, two threads are created (parent and child). The child runs first and
calls malloc () followed by printing the first half of a "Hello World! "
string and terminating. The parent thread then prints the second half of this
string and also terminates. If malloc () would still force context switches then
(depending on the student’s implementation) the string halfs are either printed
the wrong way around or the child does not print the first half at all. The grader
validates if the output is correct.

It is important to note that this assignment expects only malloc () to not force
context switches anymore. It does still expect the other system calls to follow
this behaviour (to force context switches).

15

4.1.4 threadsafe-malloc.c

The goal of the threadsafe-malloc.c test is to force a context switch be-
tween the LR and SC instructions of the malloc () call. Since malloc () does
not force context switches anymore this can only be done by timeout. So the
grader attempts to run a lot of instructions almost reaching the instructions
limit followed by malloc () in order to have that context switch by timeout
happen at the right moment. Again, there are two threads (parent and child)
and the child goes first. This is the timeline of the actual test:

1.

10.

The child thread initializes a bunch of variables and then forces a context
switch to have its next section run on a fresh timer.

. The parent thread immediately switches back to child.

. The child now has an endless loop running with a counter in its body. A

context switch happens due to timeout.

. Next, the parent thread terminates the endless loop of the child and

switches.

. The child thread finishes the last run of the loop and now has a counter

which holds the amount of times such a loop can be repeated before a con-
text switch happens by timeout. This value is slightly decreased to later
repeat the loop right before the instructions limit to then call malloc ()
and have the context switch happen during said call (between LR and SC).
However, since it finished the last run of the endless loop the timer must
be reset before this is done so the child switches.

. The parent immediately forces a context switch back to the child.

. The child runs a loop almost reaching the limit of instructions before a

context switch happens and calls malloc (). Before said call finishes this
context switch happens by timeout, of course.

. The parent now calls malloc () itself twice and joins the child (waits

for the child to terminate and switches). These malloc () calls should
conflict with the one done by the child since they all increase the bump-
pointer variable and try to store them. The child will have SC fail and
jump back to LR if correctly implemented.

. The child finishes the malloc () call. SC fails and is repeated. This

malloc call actually allocates enough space for two variables, obviously
adjacent to each other. Then different values are stored there and the
address returned by the malloc () is returned to the parent.

Finally, the parent fetches this address and stores new values at the two
addresses it allocated memory at before. To clarify, all stored values and
their addresses are distinct. The test passes only if this holds. Otherwise,
some values or addresses are duplicate and the test fails

16

4.2 treiber-stack assignment grading

The stack-push.c and stack-pop.c tests already existed as part of the
old threadsafe-malloc assignment but will be explained nevertheless.

The goal is to validate that push () and pop () methods work correctly in a
multi-threaded environment. Multiple threads are created and forced to run in
a specific order (using pthread-wait ()) while calling said methods and the
result gets validated by the grader.

4.2.1 stack-push.c

The stack—push. c test first creates a total of 8 different threads. All of these
threads call push () once each with distinct numbers e € [0,7]. Next, threads
wait or terminate so that only the main thread is left. This main thread now
calls pop () 8 times and writes all returned values to console. The test is valid
if all distinct values are found.

4.2.2 stack-pop.c

The stack-push.c test works similarly. This time the main thread calls
push () with all distinct numbers e € [0,7] and then disperses into 8 different
threads. Each of these threads calls pop () and then waits for its children (if
there are any). Again, the tast passes if all distinct values are found.

5 Changes to selfie

There have been numerous other changes and additions to the selfie system
which this section is about.

5.1 logical-and-or-not assignment

Two additional assignments were added to the compiler construction class with
the first one being the logical-and-or-not assignment [3]. The student
must implement the logical (boolean) AND (&&), OR (| |), and NOT (!) oper-
ators including their correct precedence. Whenever an operation is done using
any of these operators the uint 64_t result must always be either 1 (true) or
0 (false). Any uint64_t operant n = 0 is seen as false, otherwise if n # 0
it is seen as true.

To grade this assignment different test code files are run and their results
checked. A lot of different cases (eg. with precedence) are checked and if
anything fails the result will be wrong resulting in a failed grade.

5.2 lazy-evaluation assignment

The second assignment added is the lazy—-evaluation assignment. This
assignment requires the student to change the compiling of the logical AND

17

1 uint64_t endless_loop(uint64_t v) {
2 while (1) {}

3 return v;

4}

5

6 void main() {

7 uint64_t f£;

8 uint64_t t;

9

10 £f =0; // false

11 t =1; // true

12

13 if (t || endless_loop(f))

14 if (f && endless_loop(t))

15 return 10; // incorrect branch
16 else

17 return 42; // correct branch
18 else

19 return 11; // incorrect branch
20 }

Figure 10: Example using endless loops to test for lazy evaluation.

and OR operators in such a way that the principle of lazy evaluation is applied.
The tests are done using endless loops as shown in figure reffigl0. Whenever
lazy evaluation should have skipped any left over operants (in this case always
the operants after the only operator) these operants are calls to an endless loop.
If they are indeed properly skipped, the endless loop does not get executed,
otherwise it does. The grader simply executes these tests and checks for the
correct return value while also having the tests fail if they timeout which happens
if the endless loop gets executed.

5.3 Changes to the grader
New flags were added to the grader which can be invoked on command line [4]:

e —dependency-tree: This flag prints out all assignments showing their de-
pendencies as shown in figures 4 and 5. Without this flag the assignments
are shown as list.

e —a: Whenever an assignment is graded and this flag is active all assign-
ments it is dependent on are also tested.

e —s: This flag disables any animations as they can cause problems in certain
consoles on certain operating systems.

18

5.4 Changes to GitHub actions

There were two issues involving the selfie workflows of GitHub actions, one being
severe:

e For the major issue, student repositories are to be kept private, of course,
to obstruct cheating attempts. These repositories, however, would execute
different workflows on every git push and since the repositories are private
the amount of time these workflows are running is using up minutes from
a certain limit that you can only increase by paying. But for a proper
grade these workflows should work for the final submission. To combat
the unnecessary using up of minutes-quote two things were changed [5]:

1. The amount of quota used up is dependent on the OS the workflow
is running on. The selfie system used to run on Windows, MacOS,
and Linux for its workflows. However, MacOS uses up ten times of
the amount that Linux does, and Windows uses twice the amount
of Linux. As such, the workflows were changed in such a way that,
for private repositories only, Linux is the only OS the workflows are
run on leaving out Windows and MacOS. Public repositories stay un-
changed. This way the quota used up by students is severely lowered
making it a lot harder to reach the monthly free limit.

2. The workflows are always running on every push but only need to
for the final commit. Since students typically work on a side branch
(other than main) to do their assigment and then must do a squashed
merge into main the commits/pushes to main are almost exclusively
what they are going to submit as their solution (the finished assign-
ment). And as such the workflows were changed to do the workflows
only whenever there is a push to the main branch, for private repos-
itories only (public repositories stay unchanged again).

e The minor issue is about the usage of grading withing the GitHub actions
interface. The grader is using some smaller animations when evaluating by
changing what was already written to the console. Within said interface
this would not work correctly, however, and result in every single frame of
the animation being printed (and staying) in the console. The —s option
was added to the invocation of the grader in all workflows to omit any
animations and prevent this issue.

Additionally, you can now chose the OS to run the workflows on if they are
triggered manually. And as a final quality of life addition, the assignment chosen
for grading is now chosen via drop down menu instead of a string input field.

5.5 Code restructuring

As a final addition major code restructuring took place in the compiler [6]. The
code part defining how statements are compiled is now shorter and more clearly
structured making one of the hardest assignments of the compiler construction

19

class, the array assignment, a lot easier now. Additionally, the grammar .md
file (it mirrors the components and structure of the entire compiler and acts as
an overview of how the compiler works) has been more closely aligned to the
actual compiler code.

20

6
1]

2]

References

Computational Systems Group of the Department of Computer Sciences at
the University of Salzburg in Austria. selfie.
https://github.com/cksystemsteaching/selfie, 2022.

Andrew Waterman, Krste Asanovi‘c, SiFive Inc. The RISC-V Instruction
Set Manual.

https://riscv.org/wp—content/uploads/2017/05/
riscv-spec-v2.2.pdf, 2022.

Luis Thiele. New grading tasks: logical-and-or-not and lazy-evaluation by
CAS-ual-TY - Pull Request #312 - cksystemsteaching/selfie.
https://github.com/cksystemsteaching/selfie/pull/312,
2022.

Luis Thiele. lazy-eval description / Show grading dependencies by CAS-
ual-TY - Pull Request #320 - cksystemsteaching/selfie.
https://github.com/cksystemsteaching/selfie/pull/320,
2022.

Luis Thiele. Workflow improvements by CAS-ual-TY - Pull Request #313
- cksystemsteaching/selfie.
https://github.com/cksystemsteaching/selfie/pull/313,
2022.

Luis Thiele. compile_statement restructure (remake of #293) by CAS-ual-
TY - Pull Request #322 - cksystemsteaching/selfie.
https://github.com/cksystemsteaching/selfie/pull/322,
2022.

Luis Thiele. Thread-safe malloc grading task by CAS-ual-T'Y - Pull Request
#319 - cksystemsteaching/selfie.
https://github.com/cksystemsteaching/selfie/pull/319,
2022.

Daniel Kocher. “Systems Engineering” Lecture at the University of Austria.
https://online.uni-salzburg.at/plus_online/ee/ui/ca2/
app/desktop/#/slc.tm.cp/student/courses/575978, 2021,/2022.

Christoph Kirsch. “Introduction to Compiler Systems” Lecture at the
University of Austria.
https://online.uni-salzburg.at/plus_online/ee/ui/ca2/
app/desktop/#/slc.tm.cp/student/courses/523123, 2021.

21

A Grading tests (C* Code)

A.1 threadsafe-malloc assignment tests

A.1.1 load-reserved.c

uint64_t 1lr (uint64_t address);

int main(int argc, charxx argv) {
return (int) 1r (0);

[N N

}

A.1.2 store-conditional.c

uint64_t sc(uint64_t address, uint64_t value);

int main(int argc, charxx argv) {
return (int) sc (0, 1);

}

LS N

22

A.1.3 1lr-sc-interleaved.c

1 uint64_t 1r (uint64_t address);
2 uint64_t sc(uint64_t address, uint64_t value);

4 uint64_t pthread_create();
5 uint64_t pthread_join(uint64_t* wstatus);

// used to force context switches
// there are no process children, so this does nothing
uint64_t wait (uint64_t* wstatus);

11 uint64_t child = 0;

13 int main(int argc, charxx argv) {

14 uint64_t+ address;

15 uint64_tx status;

16 uint64_t pid;

17 uint64_t x;

18

19 address = malloc(8);

20 +address = 10;

21

22 status = malloc(8);

23

24 pid = pthread_create();
25

26 if (pid == 0) {

27 // child

28 child = 1;

29

30 x = 1lr (address);

31

32 wait ((uint64_t«) 0);
33

34 x = sc(address, Xx);
35

36 return x; // must be 1 (failed)
37 } else {

38 // parent

39

40 // make sure child is running first
41 while (child == 0)

42 wait ((uint64d_t=«) 0);
43

44 x = 1lr (address);

45

46 if (x == 10) {

23

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

if (sc(address, 42))
return 7; // parent sc may not fail but it did
} else
return 8; // wrong x value, something went entirely
wrong

// switch to child
x = pthread_join(status);

if (x == 0)
return 9; // child sc must fail but it did not
else if (xaddress == 10)

return 6; // child sc stored a new value which it
may not do

// should be 1 % 42 = 42
return xstatus % raddress;

24

A.1.4 no-switch-malloc.c

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

uint64_t write (uint64_t fd, uint64_t«* buffer,
— bytes_to_write);

uint64_t pthread_create();
uint64_t pthread_join (uint64_t+* wstatus);

uint64_t+ foo;
uint64_t child;

int main(int argc, charxx argv) {
uint64_t pid;

foo = "Hello World! "
child = 0;
pid = pthread_create();

if (pid) |
// main thread

// make sure child is executed first
// variable is shared
while (child == 0) {}

write(l, foo + 1, 8);

return 0;

} else {
// child thread
child = 1;

// see i1f we switch back to main (parent)
malloc(8);

write (1, foo, 8);

return 0O;

uint64_t

25

A.1.5 threadsafe-malloc.c

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

36

37

38

39

40

41

42

43

44

45

46

uint64_t pthread_create();

uint64_t pthread_join (uint64_t* wstatus);

void pthread_exit (uint64_t code);
uint64_t wait (uint64_t+ wstatus);

uint64_t thrd;
uint64_t loop;

int main(int argc,

uint64_t pid;
uint64_t counter;
uint64_t i;
uint64_tx* pl;
uint64_t~* p2;
uint64_t counter;
uint64_t zero;

charx* argv) {

thrd = ~1;
pid = pthread_create();

if (thrd == -1)
thrd = pid;

// make sure the child thread is

if (thrd != 0)

wait ((uinté64_tx) 0);
// assert: thrd ==
//counter = 1111108;

if (pid == 0) {

// child
A
zero = 0;

counter = 0;

loop = 1;

i = 0;

26

running first

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

// force a context switch, reset the timer
wait ((uint64_tx) 0);

while (zero < loop)
counter = counter + 1;

// endless loop forces context switch by timeout

counter = counter - 2;

// force a context switch, reset the timer
wait ((uint64_t~x) 0);

// 3 jalr instruction leftover from wait ()
// 9 instructions per loop
// 1111109 = 9 = 9999981
while (i < counter)
i=1i+ 1;
// 4 instructions on loop end
// so far: 3 + 9999981 + 4 = 9999988
// 12 instructions left
// lr is 10th instruction of malloc() call
// context switch should happen in here by timeout

// after 1lr but before sc
p2 = malloc (16);

*p2 = 18;
*(p2 + 1) = 19;

return (uinté64_t) p2;

else {
// parent

27

95

96

97

98

99

100

102

103

104

105

107

108

109

112

113

114

116

117

118

121

122

123

125

126

127

128

130

131

132

134

// force a context switch, reset the timer
wait ((uint64_t«) 0);

loop = 0;

// force a context switch, reset the timer
wait ((uint6d_t«*) 0);

// force a context switch, reset the timer
wait ((uint64_t~x) 0);

malloc (16);
malloc(8);

'O 'O
[N
]

pthread_join(p2); // switch

// p2 points to other p2 which points to 2 and
P2 = (uint64_tx) *p2;
// now p2 directly points to 2 and 3

*pl = 2;
*(pl + 1)

3;

// 10 =2 + 3 + 2 + 3
// 42 = 2 + 3 + 18 + 19 (thread-safe)
return xpl + *x(pl + 1) + *p2 + *x(p2 + 1);

28

A.2 treiber-stack assignment tests

A.2.1 stack-push.c

1 uint64_t write(uint64_t fd, uint64_tx buffer, uinté64_t
— bytes_to_write);

3 uint64_t pthread_create();
4 uint64_t pthread_join(uint64_tx wstatus);

uint64_t 1lr (uint64_t address);
uint64_t sc(uint64_t address, uint64_t value);

uint64_tx id;
10 uint64d_t«+ c;

12 uint64_t allocate_id () {

13 uint64_t value;

14

15 value = lr((uint64_t) id);

16

17 while (sc((uinté64_t) id, wvalue + 1)) {
18 value = lr((uint64_t) id);

19 }

20

21 return value;

22 }
23
24 void print_integer (uint64_t i) {

25 // single character number
26 *C = 32 * 256 + 48 4+ i;
27 write(l, c, 2);

28 }
29
30 int main(int argc, charxx argv) ({

31 uint64_t pidl;
32 uint64_t pid2;
33 uint64_t pid3;
34 uint64_tx s;

35 uint64_t«+ results;
36 uint64_t i;

37

38 id = malloc(8);
39

40 *id = 0;

41

42 s = malloc(8);

43

14 c malloc (8);

29

45

46

47

48

49

50

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

76

init_stack();

allocate_id
allocate_id
allocate_id ;

push ())
()
()

allocate_id());
()
()
()
()

push
push
push
push
push
push
push

’

’

allocate_id ;

allocate_id
allocate_id
allocate_id

’

’

’

// 2°3 processes

pidl = pthread_create();
pid2 = pthread_create();
pid3 = pthread_create();
print_integer (pop());

// do not wait for child-threads of the parent-process

if (pid3 == 0)
pid2 = 0;

if (pid2 == 0)
pidl = 0;

if (pidl)
pthread_join(s);

if (pid2)
pthread_join(s);

if (pid3)

pthread_join(s);

30

A.2.2 stack-pop.c

1 uint64_t write(uint64_t fd, uint64_tx buffer, uinté64_t
— Dbytes_to_write);

3 uint64_t pthread_create();
4 uint64_t pthread_join(uint64_tx wstatus);

uint64_t 1lr (uint64_t address);
uint64_t sc(uint64_t address, uint64_t value);

uint64_tx+ id;
10 uint64_t«+ c;

12 uint64_t allocate_id () {

13 uint64_t value;

14

15 value = lr((uint64_t) id);

16

17 while (sc((uinté64_t) id, wvalue + 1)) {
18 value = lr((uint64_t) id);

19 }

20

21 return value;

22 }
23
24 void print_integer (uint64_t i) {

25 // single character number
26 *C = 32 * 256 + 48 4+ i;
27 write (1, c, 2);

28 }
29
30 int main(int argc, charxx argv) ({

31 uint64_t pidl;
32 uint64_t pid2;
33 uint64_t pid3;
34 uint64_t« s;

35 uint64_t«+ results;
36 uint64_t i;

37

38 id = malloc(8);
39

40 *id = 0;

41

42 s = malloc(8);

43

44 c malloc (8);

45

31

46

47

48

49

51

52

54

55

57

58

60

61

62

63

64

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

init

/2
pidl
pid2
pid3

_stack();

"3 processes

= pthread_create();
= pthread_create();
= pthread_create();

push (allocate_id());

// do not wait for child-threads

if (pid3 == 0)
pid2 = 0;

if (pid2 == 0)
pidl = 0;

if (pidl)
pthread_join(s);

if (pid2)
pthread_join(s);

if (pid3)

pthread_join(s);

if (pidl != 0)
if (pid2 != 0)

if (pid3 != 0) {
// main thread
print_integer (pop (
print_integer (pop (
print_integer (pop (
print_integer (pop (
print_integer (pop (
print_integer (pop (
print_integer (pop (
print_integer (pop (

))
))
))
))
))
))
))
))

’
’

’

’

’

’

’

’

of the parent-process

32

