MASTER’S THESIS

Design and Implementation of a
Template-Based System for
Flexible Smart Home
Automation

by

LLuis THIELE

submitted in partial fulfillment of the requirements
for the degree of MASTER OF SCIENCE
in COMPUTER SCIENCE

Department of Computer Science
Paris Lodron Universitat Salzburg
Salzburg, Austria

supervised by

Univ.-Prof. Dr. WOLFGANG PREE

June 8th, 2025

Abstract

The proliferation of smart home devices has created a paradox: while
the potential for sophisticated automation is immense, the tools available
to users often fail to bridge the gap between power and accessibility. This
thesis confronts this challenge through the design and implementation
of a flexible, template-based automation system for the so-called Honua
smart home platform. It begins by analyzing the critical limitations of
a first-generation, rigid ”"Rules” engine, which bound automation logic in
a restrictive one-to-one relationship with devices, failing to accommodate
complex scenarios or diverse user capabilities.

The core contribution of this work is the development of a novel au-
tomation paradigm centered on reusable templates. This system effec-
tively decouples the complexity of creating automation logic from the
simplicity of its application. It empowers advanced users to construct
powerful, multi-step automation templates with nested conditions and
multiple actions, while enabling novice users to instantiate these tem-
plates through a simple, parameter-based interface. This approach is
demonstrated through the implementation of several real-world automa-
tion scenarios, from simple conditional lighting to complex energy surplus
management.

Furthermore, this thesis details a significant architectural refactoring
of the underlying platform, replacing a brittle dual-backend infrastruc-
ture with a robust, single-server model running on a Raspberry Pi. Se-
cure remote access, a critical challenge for self-hosted systems, is achieved
through a custom-built SSH tunneling solution, eliminating the need for a
public cloud gateway. The entire system, implemented in Go and deployed
as a containerized Docker stack, presents a complete and practical solution
that markedly enhances the flexibility, reusability, and user-friendliness of
smart home automation.

Zusammenfassung

Die zunehmende Verbreitung von Smart-Home-Gerédten hat ein Para-
doxon geschaffen: Wihrend das Potenzial fiir hochentwickelte Automati-
sierung immens ist, gelingt es den verfiigbaren Werkzeugen oft nicht, die
Liicke zwischen Leistungsfihigkeit und Zugénglichkeit zu schlieflen. Diese
Masterarbeit stellt sich dieser Herausforderung durch den En-twurf und
die Implementierung eines flexiblen, templatebasierten Automatisierungs-
systems fiir die sogenannte Honua Smart-Home-Plattform. Sie beginnt mit
der Analyse der entscheidenden Einschrinkungen einer starren ”RegelEn-
gine der ersten Generation, die Automatisierungslogik in einer restriktiven
Eins-zu-eins-Beziehung an Gerédte band und somit weder komplexe Sze-
narien noch unterschiedliche Benutzerfihigkeiten beriicksichtigen konnte.

Der Kernbeitrag dieser Arbeit ist die Entwicklung eines neuartigen
Automatisierungsparadigmas, das auf wiederverwendbaren Templates ba-
siert. Dieses System entkoppelt effektiv die Komplexitédt der Erstellung
von Automatisierungslogik von der Einfachheit ihrer Anwendung. Es er-
moglicht fortgeschrittenen Benutzern, leistungsstarke, mehrstufige Auto-
matisierungsvorlagen mit verschachtelten Bedingungen und mehreren Ak-
tionen zu erstellen, wiahrend es Anfangern gestattet, diese Vorlagen tiber
eine einfache, parameterbasierte Schnittstelle zu instanziieren. Dieser An-
satz wird durch die Implementierung mehrerer realer Automatisierungs-
szenarien demonstriert, von einfacher konditionaler Beleuchtung bis hin
zum komplexen Management von Energieiiberschiissen.

Dariiber hinaus beschreibt diese Arbeit ein signifikantes architekto-
nisches Refactoring der zugrundeliegenden Plattform, bei dem eine feh-
leranfillige duale Backend-Infrastruktur durch ein robustes Einzelserver-
Modell ersetzt wird, das auf einem Raspberry Pi lduft. Der sichere Fern-
zugriff, eine kritische Herausforderung fiir selbstgehostete Systeme, wird
durch eine mafigeschneiderte SSH-Tunneling-Lésung realisiert, wodurch
die Notwendigkeit eines 6ffentlichen Cloud-Gateways entfillt. Das gesam-
te System, implementiert in Go und als containerisierter Docker-Stack
bereitgestellt, stellt eine vollstindige und praxisnahe Losung dar, wel-
che die Flexibilitdt, Wiederverwendbarkeit und Benutzerfreundlichkeit der
Smart-Home-Automatisierung entscheidend verbessert.

Al Disclosure Statement

In the course of writing this Master’s thesis, I employed the artificial
intelligence (AI)-based tools ChatGPT-4.5 from OpenAl and Gemini Pro
2.5 from Google for support.

I utilized the AI to generate text for Chapter 1, in which commonly
known technologies are described, and for the abstract.

All content generated by the AI was critically reviewed, placed into
its technical context, and revised where necessary by me. The entirety of
all statements, arguments, as well as the selection and evaluation of the
sources, remains my own responsibility.

The use of these tools was reflective and undertaken with an awareness
of the technical, ethical, and scientific limitations of generative Al systems.

Contents

1

Introduction 6
1.1 Tech-Stack 6
1.1.1 Home Assistant 6
1.1.2 Go e 8
1.1.3 gRPC & protoc. 9
1.14 PostgreSQLo 10
1.1.5 MongoDB 11
1.1.6 Docker. o 11
1.1.7 Raspberry Pio 12
1.2 Honua: Initial Project Implementation 13
1.2.1 Initial Architecture: The Public vs. Private Backend Model 13
1.2.2 The Original Frontend User Interface 15
1.2.3 First-Generation Automation: The “Rules” System 17
1.2.4 Analysis of Issues and Limitations 19
1.2.5 Inflexibility of the Rule System 20
Template System 20
2.1 The Problem, 20
2.2 The Solution 21
2.3 Template Structure oo 21
2.3.1 Comparison 21
2.4 Specific Automations 23
2.4.1 “Office Light”o oo 23
2.4.2 “Water Temp.” 24
2.4.3 “Water Pump” 25
244 “Load Battery” 26
2.4.5 “Bathroom Temp.” 27
2.5 Implementation Specifics. 28
2.5.1 Templates & Rules 28
Installation & Deployment 29
3.1 Raspberry Pi 29
3.2 Creating Docker Images on Docker Hub 29
3.3 Deploying the Docker Stack 30
3.4 gRPC & Protocol Buffer (protoc) 30
More Solutions 30
4.1 Template Frontend App Prototype 30
4.2 cron Package o 32
4.3 SSH Tunnel Package & ITmage 33
4.4 Additional Honua Changes 34
4.5 Future Extension Possibilities 34
References 37

A Template System 38

Al action.go o 38
A2 condition_aggregate.goo 41
A3 condition.cron.go 43
A4 condition_immediate.go 44
A5 conditionmnot.go. 45
A6 conditionnumeric_sensor.go 46
A7 condition_Sensor.go i e 48
A8 condition_time.go 50
A9 condition.go 52
Al0context.go o vt 53
Al cExXvVAr.go . . . v o e e e e 54
Al2datatypeool.go 59
Al3 datatype cron.go o vt 60
Ald datatype_entity.goo 61
Al5datatypeint.go o 62
A.16 datatype numeric_Sensor.go « v v i i 64
A 17 datatype_Ssensor.go i i 66
Al8datatype.go oo 67
Al19rule.goo 68
A20state.go 70
A2l templatemanager.goot i e e e 71
A22template.go 77
A23util.go 80

1 Introduction

In the rapidly evolving landscape of the Internet of Things (IoT), the smart
home has emerged as a focal point of innovation, promising a future of en-
hanced convenience, efficiency, and security. However, the current ecosystem is
often fragmented, with a multitude of devices from various manufacturers, each
requiring its own application and configuration process. This complexity can
present a significant barrier to entry for non-technical users, undermining the
very convenience that smart technology aims to provide.

Honua is a sophisticated yet user-centric application designed to address these
challenges directly. It offers a unified and streamlined platform for smart home
automation, prioritizing intuitive operation and effortless configuration. By ab-
stracting the underlying technical complexities, Honua provides a seamless user
experience, empowering individuals to easily manage their smart devices and
create powerful, personalized automation routines. This introduction details
the robust technological foundation upon which Honua is built, explaining the
role and synergy of each component in delivering a powerful and accessible smart
home solution.

1.1 Tech-Stack

The architecture of Honua is a carefully curated ecosystem of modern, high-
performance tools and technologies. The backend, which forms the core of the
system, is deployed as a cohesive Docker stack on a low-power Raspberry Pi.
This backend leverages the comprehensive Home Assistant API to interface with
a wide array of smart sensors and control devices. The primary logic is imple-
mented in Go, a language renowned for its efficiency and concurrency, with data
persistence handled by a dual-database strategy employing both PostgreSQL
and MongoDB. The frontend is a native Android application built with Flutter
(Dart), ensuring a responsive and modern user interface. Communication be-
tween the frontend and backend is achieved through gRPC, a high-performance
framework that utilizes Protocol Buffers for defining a clear and strongly-typed
API contract.

1.1.1 Home Assistant

Home Assistant is a home automation platform that serves as the foundational
layer for Honua. Launched in 2013, it has grown into one of the most pow-
erful and flexible smart home solutions available, supported by a massive and
vibrant global community of developers and enthusiasts. Its primary mission is
to provide a unified system for controlling all aspects of a smart home, with a
steadfast commitment to local control and user privacy [1].

Core Philosophy: Local Control and Privacy Unlike many commercial
smart home hubs that rely on cloud servers, Home Assistant is designed to run
locally on hardware within the user’s own network, such as a Raspberry Pi

or a dedicated home server. This “local-first” approach is a cornerstone of its
philosophy and offers several critical advantages:

e Reliability: Since the core logic runs locally, the smart home continues to
function perfectly even if the internet connection goes down. Automations
will still trigger, and devices can be controlled without issue.

e Speed: Commands are sent directly from the local server to the devices on
the same network, resulting in near-instantaneous response times without
the latency of a round-trip to a corporate cloud server.

e Privacy: Perhaps most importantly, all sensitive data about the user’s
home—when they are present, which lights are on, camera feeds—remains
securely within their own network. This gives the user complete ownership
and control over their personal information.

Integrations The single greatest strength of Home Assistant is its immense
ecosystem of integrations. The platform acts as a universal translator for smart
devices, capable of communicating with a staggering number of products from
hundreds of different brands. Thanks to its open-source nature, the commu-
nity has contributed integrations for over 2,500 different devices and services,
covering every conceivable category:

e Lighting: Philips Hue, Lifx, Nanoleaf, WLED

Climate: Nest, Ecobee, Tado, generic climate controllers

Media & Entertainment: Sonos, Spotify, Plex, Kodi, Samsung TV

Security: Alarm systems, security cameras, motion sensors, door locks
e Energy: Solar panel inverters, smart plugs with energy monitoring

Home Assistant unifies these disparate ecosystems, allowing devices that were
never designed to work together to be seamlessly incorporated into powerful
automations.

The Role of Home Assistant in Honua While Home Assistant provides its
own user interface (known as Lovelace) and a robust automation engine, Honua
is designed to offer a uniquely curated and streamlined user experience. Instead
of attempting to replicate the monumental effort of integrating with thousands
of devices, Honua strategically leverages Home Assistant’s power.

In the Honua architecture, Home Assistant acts as a hardware abstraction layer.
It does the heavy lifting of device discovery, communication, and standardiza-
tion. Honua then interacts with Home Assistant’s stable and well-documented
Application Programming Interface (API). This approach provides several key
benefits:

e Universal Compatibility: By using the Home Assistant API, Honua in-
stantly gains access to every device that Home Assistant supports, both
now and in the future.

e Focus on User Experience: By delegating the low-level device control to
Home Assistant, the development of Honua can focus entirely on what it
does best: creating an intuitive interface, a superior automation-building
experience, and a polished mobile application.

e Stability and Reliability: Honua builds upon a mature, time-tested plat-
form known for its stability, offloading the core operational risks to a
system trusted by millions.

Essentially, Honua serves as a sophisticated and user-centric “head” for the
powerful Home Assistant “body”. It replaces the default user interface and
automation implementation with its own specialized logic, while relying on the
underlying Home Assistant platform to serve as a reliable and all-encompassing
bridge to the physical hardware in the user’s home.

1.1.2 Go

The entire backend logic of Honua is written in Go (Golang). Developed at
Google and released in 2009, Go was conceived as a pragmatic response to the
growing complexity of modern software development. It is a statically typed,
compiled language designed to build software that is simple, highly efficient,
and exceptionally reliable, making it a premier choice for demanding backend
systems [2].

Strengths Go’s design philosophy can be summarized as “less is more”. It
intentionally omits many of the complex features found in other object-oriented
languages like C++ or Java, resulting in a smaller language specification and a
cleaner, more readable syntax. This simplicity is not a limitation but a powerful
feature, as it leads to code that is easier to write, review, and maintain over the
long term.

Its key strengths are particularly suited to the needs of a smart home application:

e Elite Concurrency: Go’s most celebrated feature is its built-in model for
concurrency. Instead of traditional, heavy operating system threads, Go
uses goroutines, which are extremely lightweight threads managed by the
Go runtime. It’s feasible to have hundreds of thousands of goroutines run-
ning simultaneously. Communication between these goroutines is safely
handled through channels, which prevent the race conditions that plague
other concurrent programming models.

e Compiled Performance: Go is a compiled language, translating source code
directly into machine code. This results in performance that approaches
the speed of C or C++, while offering memory safety and garbage collec-
tion. For Honua, this means the system can process sensor data, evaluate

complex automation rules, and respond to user commands with minimal
delay.

e Effortless Deployment: A Go program compiles into a single, statically
linked binary file. This file contains the application and all its depen-
dencies, with no need for interpreters or virtual machines on the target
machine. This makes deployment incredibly straightforward—a single file
can be copied to the server and executed.

Go’s Role in the Honua Architecture Within Honua, Go’s capabilities are
leveraged to create a backend that is both powerful and robust. The concurrency
model is a perfect match for the chaotic nature of a smart home environment,
where dozens of events might occur at once. A motion sensor trigger, a user
tapping a button in the app, a scheduled automation firing, and a thermostat
reporting a new temperature can all be handled concurrently as independent
goroutines, ensuring the system remains responsive and stable under load. The
compiled binary is placed within a minimal Docker container, creating a highly
efficient and portable service that is perfectly suited for running on the resource-
conscious Raspberry Pi.

1.1.3 gRPC & protoc

For all communication between the Flutter mobile application (frontend) and
the Go backend, Honua utilizes gRPC (Google Remote Procedure Calls). Devel-
oped and open-sourced by Google, gRPC is a modern, high-performance frame-
work designed to create efficient and reliable connections between services. It
represents a significant evolution from traditional REST APIs, offering superior
speed, stronger guarantees, and more flexible communication patterns [3].

Protocol Buffers At the heart of gRPC is Protocol Buffers (protoc), a pow-
erful and language-agnostic mechanism for serializing structured data. Unlike
REST APIs that typically use text-based JSON, gRPC uses Protobuf to en-
code data into a compact binary format. This has profound implications for
performance:

e Size and Speed: Protobuf messages are significantly smaller and faster
to serialize and deserialize than their JSON counterparts. This reduces
network bandwidth consumption and saves CPU cycles, which is especially
critical for battery-powered mobile devices.

e Strong Typing and a Clear Contract: The structure of all APT calls and
data messages is defined in a central .proto file. This file acts as an un-
ambiguous, language-agnostic contract. The protoc compiler then uses
this file to automatically generate the necessary client-side code in Dart
(for Flutter) and server-side code in Go. This strong typing eliminates
an entire class of data-mismatch errors and makes the API robust against
changes.

Communication Beyond simple request-response, gRPC excels by support-
ing advanced, real-time communication patterns. Its most powerful feature for
an application like Honua is bidirectional streaming. This allows for a persis-
tent, two-way communication channel to be established between the server and
the app.

This capability is the key to Honua’s live, responsive feel. When a device state
changes—for example, a physical light switch is flipped—the backend can in-
stantly push this update through the open stream to the app. The app doesn’t
need to constantly poll the server asking updates. This proactive push model is
far more efficient and provides the instantaneous UI feedback that users expect
from a modern smart home application.

1.1.4 PostgreSQL

To cache critical states, Honua relies on PostgreSQL, an exceptionally power-
ful and reliable open-source object-relational database system. With over three
decades of active development, PostgreSQL has earned an unparalleled repu-
tation for its adherence to standards, feature robustness, and data integrity,
making it a trusted choice for mission-critical applications [4].

Relational Model PostgreSQL is built on the relational model, which orga-
nizes data into tables with predefined columns and data types. This structured
approach is ideal for data where consistency and integrity are non-negotiable.

e ACID Compliance: PostgreSQL is fully ACID compliant (Atomicity, Con-
sistency, Isolation, Durability). This is a set of guarantees ensuring that
database transactions are processed reliably. For Honua, it means that
when a device state change is recorded, it is guaranteed to be saved cor-
rectly and permanently, preventing data corruption or loss.

e Data Integrity: The rigid schema ensures that data is always clean and
predictable. A temperature reading is always stored as a number, and a
timestamp is always a valid time. This makes querying and aggregating
data for historical analysis—such as creating a chart of a room’s temper-
ature over the last 24 hours—both simple and trustworthy.

PostgreSQL’s Role in Honua Within the Honua architecture, PostgreSQL
serves as the official system of record for time-series and state data. Every
event, from a door sensor being triggered to a smart plug reporting its energy
consumption, can be logged with a precise timestamp. This provides a rich,
queryable history of everything that has happened in the home. By caching the
most recent state of all devices, the system can quickly serve this information
to the app without needing to query every device individually, significantly
improving the responsiveness of the user interface.

10

1.1.5 MongoDB

Complementing the structured storage of PostgreSQL, Honua employs Mon-
goDB to handle data that is dynamic, complex, and doesn’t fit neatly into
the rigid rows and columns of a relational database. MongoDB is a leading
document-oriented NoSQL database that offers immense flexibility in how it
stores information, making it a perfect fit for user-generated and configuration-
heavy content [5].

Document Model Instead of tables, MongoDB stores data in BSON (Bi-
nary JSON) documents. These documents are self-describing, hierarchical data
structures that can include nested documents and arrays. This model provides
what is often called a “flexible schema”.

e Adaptability: The structure of a document can be changed at any time.
New fields can be added, or old ones removed, without requiring a complex
and disruptive database migration. This is ideal for a system in active
development, where features and their underlying data needs may evolve.

e Natural Data Mapping: Many objects in programming languages, like a
complex configuration object in Go, map naturally to a single JSON-like
document. Storing this object in MongoDB is as simple as serializing it,
which greatly simplifies the application code compared to shredding the
object across multiple relational tables.

MongoDB’s Role in Honua MongoDB is the designated repository for all
user-specific configurations that demand flexibility. Its primary use cases in
Honua are:

e Dashboard Layouts: Every user’s dashboard is unique. One user might
have a simple list of buttons, while another might have a complex, multi-
tabbed grid with graphs, sliders, and custom widgets. Storing this entire
layout as a single, nested document in MongoDB is incredibly natural and
efficient.

e Automation Templates: Honua’s automation templates can have varying
numbers of parameters, optional fields, and complex logical structures.
The document model effortlessly accommodates this variability, allowing
for rich and powerful templates to be serialized, stored, and accessed with-
out constraint.

1.1.6 Docker

The entire Honua backend—the Go application, the PostgreSQL and MongoDB
databases, and all their dependencies—is packaged and deployed using Docker.
Docker is a revolutionary platform that enables applications to be run in iso-
lated environments called containers. This approach fundamentally changes

11

how software is built, shipped, and run, bringing industrial-scale consistency
and efficiency to projects of any size [6].

Containers: Lightweight, Portable, and Efficient A container bundles
an application’s code with all the libraries and dependencies it needs to run. This
self-contained unit can then be run on any machine that has Docker installed,
regardless of its underlying operating system or configuration.

e Consistency and Portability: Docker solves the classic “it works on my
machine” problem. A containerized application runs in an identical envi-
ronment whether it’s on a developer’s Windows laptop, a testing server,
or the production Raspberry Pi. This eliminates a vast array of potential
bugs caused by environment differences.

e Lightweight Virtualization: Unlike traditional Virtual Machines (VMs)
that virtualize an entire hardware stack and run a full guest operating
system, containers virtualize at the OS level, sharing the host machine’s
kernel. This makes them incredibly lightweight, allowing them to start in
seconds and consume far fewer resources in terms of CPU and RAM.

Docker’s Role in Honua For the Honua project, Docker and its companion
tool, Docker Compose, provide the backbone for deployment and management.
The entire backend is defined in a single .yaml file, which describes the set of
services to run: one container for the Go application, one for the PostgreSQL
database, and one for the MongoDB database.

This architecture provides immense operational benefits. Deploying the entire
system from scratch becomes as simple as running a single command. Updating
the application is just as easy: pull the new image for the Go service and
restart the stack. This containerized approach ensures that the Honua backend
is robust, easy to manage, and simple to replicate, forming a professional and
resilient deployment strategy.

1.1.7 Raspberry Pi

The designated hardware platform for the Honua backend is a Raspberry Pi, a
series of low-cost, credit-card-sized single-board computers (SBCs). Originally
created by the Raspberry Pi Foundation to promote computer science educa-
tion, these tiny yet capable devices have ignited a movement among makers,
hobbyists, and even industrial users, proving to be the perfect platform for
countless dedicated computing tasks [7].

Single-Board Computer An SBC, as the name implies, integrates all the
essential components of a functional computer—CPU, memory, networking, and
I/0O ports like USB—onto a single circuit board. This compact and integrated
design makes it perfect for embedded applications where size, cost, and power
consumption are critical factors.

12

The Raspberry Pi has established itself as the de facto standard in this space
due to:

e Low Power and Cost: A modern Raspberry Pi consumes a tiny amount
of electricity (typically 3-5 watts), making it dramatically cheaper to run
24/7 than a traditional desktop or server. Its low purchase price makes it
highly accessible for any home project.

e Sufficient Performance: While not designed for heavy desktop comput-
ing, modern iterations of the Raspberry Pi feature powerful multi-core
ARM processors and several gigabytes of RAM. This provides more than
enough horsepower to run the entire containerized Honua stack—including
Home Assistant, the Go backend, and multiple databases—smoothly and
efficiently.

e Vast Community and Ecosystem: The Raspberry Pi is supported by one
of the largest and most active communities in computing. Any question,
problem, or project idea has likely been documented in extensive tuto-
rials, forums, and videos, making setup and troubleshooting incredibly
straightforward.

The Raspberry Pi’s Role in Honua The Raspberry Pi is the physical
home for Honua. It is the ideal “set it and forget it” device. It can be tucked
away on a shelf and run silently and continuously, serving as the reliable brain
of the smart home. The backend is deployed on a Raspberry Pi running the
standard Raspberry Pi OS (a derivative of Debian Linux), a stable and well-
supported operating system. The combination of the Pi’s efficiency and Docker’s
containerization creates a home server solution that is powerful, affordable, and
exceptionally easy to maintain.

1.2 Honua: Initial Project Implementation

This section provides a comprehensive overview of the Honua application’s ar-
chitecture and feature set at the commencement of this project. It details the
initial design of the backend infrastructure, the capabilities of its first-generation
automation engine, and a critical analysis of the inherent limitations that ne-
cessitated the subsequent re-architecture and development efforts.

1.2.1 Initial Architecture: The Public vs. Private Backend Model

At its inception, Honua employed a complex, dual-backend architecture de-
signed to overcome a common and significant hurdle in self-hosted applications:
providing reliable remote access to a user’s home network. Many home internet
providers use techniques like Carrier-Grade NAT (CGNAT) or assign dynamic
IP addresses, making traditional port forwarding an unreliable, technically chal-
lenging, and often insecure solution for the average user. To circumvent this,

13

Internet

Frontend

Figure 1: Private & Public Backend

the system was split into two distinct components: a “private” backend run-
ning locally within the user’s home and a “public” backend deployed in a cloud
environment.

e The Private Backend (Local Controller): This component was deployed on
the Raspberry Pi within the user’s home network. Its sole purpose was to
be the “edge controller”, communicating directly with the Home Assistant
API to query sensor states and execute commands on local smart devices.
It possessed an intimate knowledge of the home’s state but was, by design,
unreachable from the outside internet.

e The Public Backend (Cloud Gateway): This component was a separate
application deployed on a cloud provider, giving it a stable, publicly ac-
cessible TP address. It served as the central “rendezvous point” for the
system. Its primary responsibilities were to authenticate the frontend mo-
bile application, receive commands from the user, and act as a message
broker and state cache.

The communication flow between these components was orchestrated to bypass
the need for an inbound connection to the user’s home. The private backend
would establish a persistent, outbound connection (e.g., a long-lived WebSocket
or a long-polling HTTP request) to the public backend. This connection acted
as a secure tunnel. When a user issued a command from the mobile app, the
request would travel to the public backend. The public backend would then
send the command down the already established tunnel to the correct private
backend, which would then execute it locally. State changes detected by the
private backend were pushed up to the public backend through the same tunnel

14

6:51 & O @ *40 651 & 0O @ *4aN

& Neue Konfiguration ® = Test
, Titel

Test ”f\@}}}v.mn energy English v
Fonuara S Management

testSystem
Email address Email address

_Port N example@example.con

10.0.2.2 50052
Password Password

{) \)
 Victron Site ID O N I

133290
\ Forgot password

Stay signed-in

Lokales Netzwerk hinzufiigen (Optional) +

Don't have an account yet? S

Trouble with authentica

Learn more about VRMCommunityTry our free demo

4 v/

Energie - Statistik

(a) Login Screen (b) Victron Login Screen

Figure 2: Honua Frontend Login Screens

to be cached and relayed to the app.

This entire intricate workflow is illustrated in Figure 1. The diagram shows
the server listeners for both backends, with the public listener being directly
accessible from the internet, whereas the private listener is confined to the LAN.
The arrows depict the active connection requests that form the communication
chain, from the user’s app to the cloud and finally down to the local Raspberry
Pi.

1.2.2 The Original Frontend User Interface

The initial Honua system was a complete solution, comprising not only the
backend infrastructure but also a fully functional frontend mobile application for
the Android platform, developed using the Flutter framework. This application
served as the primary user-facing component, providing the means to monitor,
control, and automate smart home devices. The following figures illustrate the
key screens of this initial application, demonstrating its capabilities and user
interaction model.

The entry point to the application is the login screen, shown in Figure 2a. This
screen prompted the user for credentials to connect to their Honua instance. No-
tably, the IP address 10.0.2.2 is a special alias within the Android emulator
environment. It is used during development to redirect network traffic from the

15

6:51 & O @ A7 | 651 & 0O @ o4
& Neue Regel = Test
géizung Wohnbereich . Cannot find currentWeather 0
Auswertung der Regel Wasserpumpe 0 EI
QO standard @® Periodisch
Intervall
15 Minuten v
Bedingung
Wenn eine der Bedingungen erfiillt ist -
Sensor -
Dann +
Aktion - =
Sonst -+
® 4 1]
A Dashboard
(a) New Rule Screen (b) Rules Overview Screen

Figure 3: Honua Frontend Rules Screens

emulated phone to the loopback interface (localhost) of the host computer
running Android Studio. This allows for seamless testing of the client-server
communication without requiring a physical device on the local network.

Upon successful login, the user was presented with the rules overview screen,
depicted in Figure 3b. This screen acted as the central dashboard for monitoring
and managing all connected devices and their associated automation rules. For
each device, such as the “Wasserpumpe” (Water Pump) shown, the interface
provided critical at-a-glance information. A color-coded numerical indicator
displayed the device’s current state: a red 0 signifies that the device is off,
whereas a green 1 would indicate it is on.

A key feature of this interface was the intuitive, dual-mode control system. A
highlighted box around the R (for Rule) signifies that the device is currently in
“Automatic” mode, where its state is dictated by the logic of its assigned rule.
The user could, at any time, tap on the state indicator (0 or 1) to manually
override the automation. Doing so would move the highlighted box to the state
indicator, placing the device in ”Manual” mode. This toggle provided users
with an immediate and powerful method to take direct control or re-engage
rule-based evaluation as needed.

Figure 3a shows the rule configuration screen, where users could define the
logic for the automation. The interface separated triggers into two distinct

16

categories: “Standard” for event-based triggers (e.g., from a sensor change)
and “Periodic” for time-based triggers, the latter of which is selected in the
figure. For combining multiple conditions into a single outcome, the user could
select a logical connective from a dropdown menu, with “OR” being chosen
in this example. The screen then prompts the user to populate the essential
components of the rule: defining the input sensor(s) that drive the logic, and
specifying the corresponding “Then” and “Else” action blocks to be executed.

Beyond direct device automation, the initial application also integrated with
third-party systems to provide a more holistic view of the home environment.
Figure 2b displays the login screen for Victron Energy, a manufacturer of power
management systems. This screen served as a gateway to the Victron Remote
Management (VRM) portal. After authenticating, a user could access a wealth
of detailed telemetry regarding their home’s energy ecosystem, including data on
solar power production, battery state of charge, and overall energy consumption,
directly within the Honua application.

1.2.3 First-Generation Automation: The “Rules” System

The initial version of Honua already supported automation through a system re-
ferred to as “Rules”. This system was designed to be simple and approachable,
providing a basic framework for creating cause-and-effect logic. Its structure,
however, was highly rigid and defined by a strict set of constraints. Rule Struc-
ture and Binding

The core concept of the Rules system was a tight, one-to-one relationship be-
tween a rule and a device. For every controllable device (e.g., a lamp), a user
could define exactly one rule. Conversely, that rule could only control that sin-
gle device. This made the rule less of a standalone automation and more of an
extended attribute of the device itself. At any time, the user could toggle the
device between two modes: “Manual”, where the user had direct on/off control,
and “Automatic”, where the device’s state was determined exclusively by the
evaluation of its associated rule.

Components of a Rule Each rule was composed of a well-defined set of
components:

e Triggers: These defined when a rule’s logic should be evaluated. Two
types of triggers were supported:

— Sensor Triggers: The rule evaluation was initiated whenever the state
of a linked sensor changed (e.g., a motion sensor detecting move-
ment).

— Periodic Triggers: The rule evaluation was initiated at a fixed time
interval (e.g., every five minutes), which was useful for checking con-
ditions like ambient temperature.

17

Conditions and Connectives: The core logic of the rule was a set of con-
ditions that evaluated to true or false. For instance, a condition could
be Time is after 10 PM or Window sensor is ‘closed’. To combine mul-
tiple conditions into a single outcome, the user could select one logical
connective: AND, OR, NAND, or NOR. This accumulator would process all
conditions to yield a final boolean result.

Actions (“Then”/“Else”): Based on the final outcome of the condition
evaluation, one of two action lists would be executed.

— “Then” Actions: This was a list of actions to perform if the accu-
mulated condition was true. For example, Turn device on and Set
brightness to 75

— “Else” Actions: This was an alternative list of actions to perform if
the accumulated condition was false. This was critical for creating
reverting logic, such as Turn device off when motion was no longer
detected.

Rules A list of rules, which were specifically part of the initial requirements.

“Office Light”: IF Powergrid Available THEN Turn on Light ELSE Turn
off Light

“Water Temp.”: IF Solar Surplus > 30 and Water Temp. < 60°C THEN
Turn on Water Heater; Wait 30min. ELSE Turn off Water Heater

“Water Pump”: IF Water Tank < 30% THEN Turn on Water Pump;
Wait 30min. ELSE Turn off Water Pump

“Load Battery”: IF Current Time € [01:30h, 03:30h] THEN Turn on
Battery Charger ELSE Turn off Battery Charger

“Bathroom Temp.”: IF Bathroom Temp. < 5°C THEN Turn on Bathroom
Heater; Wait 1h ELSE Turn off Bathroom Heater

Component Types List Here is a list of component types for rules.

Trigger Types

ONEMIN: Trigger every minute.
TWOMIN: Trigger every two minutes.
FIVEMIN: Trigger every five minutes.
TENMIN: Trigger every ten minutes.
FIFTEENMIN: Trigger every 15 minutes.
TWENTYMIN: Trigger every 20 minutes.

TWENTYFIVEMIN: Trigger every 25 minutes.

18

THIRTYMINMIN: Trigger every 30 minutes.

FORTYFIVEMIN: Trigger every 45 minutes.

ONEH: Trigger every hour.

TWOH: Trigger every two hours.

e SIXH: Trigger every six hours.

Condition Types

e NUMERICSTATE: Check if the numeric state of a sensor is above a config-
urable value, below a configurable value, or both.

e STATE: Check if the state of a sensor yields on or off.

e TIME: Check if the current time is after a configurable value, before a
configurable value, or both.

Action Types
e SERVICE: Set the device state to a configurable state (on or off).

e DELAY: Locks the device state to its current state for a configurable
amount of time.

1.2.4 Analysis of Issues and Limitations

While functional at a basic level, this initial implementation of Honua suffered
from significant architectural and conceptual issues that limited its scalability,
maintainability, and ultimate utility for the user. Architectural Deficiencies

The dual-backend architecture, while a clever workaround for port forwarding,
introduced severe problems:

e Code Duplication and Maintenance Overhead: A significant portion of
the application’s logic-handling user authentication, device models, and
rule structures—had to be implemented and maintained in two separate
codebases (the public and private backends). Any change to a feature
required coordinated updates in both places, doubling the development
effort and dramatically increasing the risk of introducing bugs.

e Synchronization Complexity and Latency: The system’s reliability was
entirely dependent on the constant, stable connection between the two
backends. This introduced noticeable latency, as a user command had to
make a round trip from the app, to the cloud, down to the Pi, and then
to the device. Furthermore, it created complex synchronization challenges
and race conditions, where the state cached in the public backend could
easily become out of sync with the true state of the devices in the home,
leading to a confusing and unreliable user experience.

19

e Single Point of Failure and Cost: The public backend represented a cen-
tralized point of failure. If the cloud service experienced an outage, all
users would lose remote control capabilities simultaneously. This archi-
tecture also incurred ongoing cloud hosting costs for servers, databases,
and data transfer.

1.2.5 Inflexibility of the Rule System

The automation engine was fundamentally too static and failed to cover a wide
range of common smart home scenarios:

e The Rigid One-to-One Binding: This was the most critical limitation.
Users could not create a single automation to control multiple devices. A
“Good Night” scene that turns off three lights, locks the door, and lowers
the thermostat was impossible to implement in a single rule. A user would
need to create a separate, nearly identical rule for each device, which was
both tedious and inefficient.

e Lack of Reusability: Because a rule was tied to a specific device, there
was no way to create a reusable automation template. If a user wanted
the same motion-based lighting logic in three different rooms, they had to
manually recreate the entire rule three times.

e Limited Expressiveness: The simple IF/THEN/ELSE structure was not
powerful enough for more advanced logic. Scenarios requiring ELSE IF
conditions, delays between actions (e.g., “turn off the fan 10 minutes after
the light is turned off”), or the ability to trigger other rules were not
supported. The system failed to provide the customization and power
necessary to fulfill a user’s unique and evolving automation requirements.

2 Template System

To overcome the issues of the current rule system, a new smart home automation
system was proposed and implemented.

2.1 The Problem

To formerly define the problem this new system wants to solve, we first must
acknowledge that there are a multitude of different users. There are users with
limited technical capabilities who would require a very easy automation system
similar to the current one, there are uses with very advanced technical capa-
bilities who want a very advanced and customizable system, and there might
be users with limited abilities who want a simple view on an advanced system
another person has setup for them. So, this system must cover all different and
individual automation needs from simple to advanced while also giving a view
on it which is also anything from easy to expert.

20

2.2 The Solution

The solution is the introduction of rule templates. Users have the options of
either picking a template and filling out the required parameters, creating a
template themselves for multi-use, or fully creating a rule (by creating a template
and immediately instantiating it).

Now you can have very easy and simple automation configuration while also
supporting very advanced configurations. You also support the ability of an ad-
vanced user setting up templates for other users to use who have lesser technical
capabilities.

2.3 Template Structure

We must differentiate between templates and template instances. Firstly, the
structure of the former is explained, then it is expanded to show how it is
instantiated.

Templates are made up of a list of rules and a list of configuration variables. A
rule has a condition and a list of actions. The condition is checked every second
and decides whether the actions are executed or not. When adding a condition
or action it might require you to set identifiers for variables which have to be
set on instantiation. Rules also require you to set their initial state (on or off)
as rules can be active or inactive and thus require a starting state.

On template instantiation you are only required to pass a list of values for the
configuration variables, i.e., the identifiers of conditions and actions earlier. Of
course, these configuration values have to be the appropriate data type for the
condition or action they were assigned to. Next, all rules are instantiated such
that their state (on or off) is now properly tracked.

Templates and their instances are all managed by the template manager, which
allows you to add, remove, and instantiate templates or delete such instances.
It is directly accessible over gRPC and, as such, also supports querying a full
list of templates and template instances.

2.3.1 Comparison
The older system which this template system is replacing is fully covered.

What was defined as trigger and condition in the old system is now replaced by
the condition of templates. The periodic timed triggers can be replaced using
cron conditions and the ability of having multiple conditions aggregated is also
supported due to the recursive nature of the new condition system where all the
aggregate types (OR, AND, NOR, NAND, and also NOT) are a condition themselves
which can be nested as desired.

The ability to delay actions by locking their state change is fully covered by the
ability to turn off rules until a certain amount of time passes.

21

Component Types List Here is a list of component types of the new tem-
plate system.

Data Types
e BOOL: Always true or false.
e INT: A 64-bit signed integer value (can be 32-bit on certain systems)

e CRON: A cron object, which yields whether the current time triggers this
object or not.

e NUMERIC_SENSOR: The ID of a sensor which yields the current numeric
value of a sensor.

e SENSOR: The ID of a sensor which yields the current boolean value of a
Sensor.

e ENTITY DEVICE: The ID of a device, which exposes the ability to turn
the device on or off.

Condition Types

e IMMEDIATE: This condition requires a BOOL variable and is fulfilled when
this variable yields true.

e NOT: This condition requires a sub-condition and simply yields the nega-
tion of the result of this sub-condition.

e OR: This condition requires a list of sub-conditions and yields the OR-
aggregation of the results of these sub-conditions.

e AND: This condition requires a list of sub-conditions and yields the AND-
aggregation of the results of these sub-conditions.

e NUMERIC_SENSOR: Requires a NUMERIC_SENSOR variable and two OptionalFloat
(one max and one min) and yields whether the value of the sensor is above
the min (if given) and below the max (if given).

e SENSOR: Requires a SENSOR variable and a BOOL variable and yields
true if the state of the sensor yields the value of the boolean variable.

e TIME: Requires two INT variables where both describe minutes of a 24h
cycle ([0, 60*24] = [0, 1440]) and yields true if the current day-minute is
between these variables.

e CRON: Requires a cron variable and yields true if the current time trig-
gers this cron object.

Action Types

e ENTITY_ON: Requires an ENTITY DEVICE variable and turns this entity
on when executed.

22

e ENTITY_OFF: Requires an ENTITY_DEVICE variable and turns this entity
off when executed.

e RULE_ON: Requires a rule ID and turns this rule on when executed.

e RULE_OFF: Requires a rule ID and turns this rule off when executed.

2.4 Specific Automations

Here is a description on how to implement the specific requirements listed pre-
viously in the new template system. For readability purposes there are no
page-breaks within an automation definition.

2.4.1 “Office Light”

Exact Definition:

e Variables:
— CRON interval: When to check state.
— SENSOR power_grid: Sensor ID of the availability of the power grid

as boolean.

— ENTITY.DEVICE light_switch: Device ID of the light switch.

e Rule 1: Initial state is on.

Condition: AND ([

— CRON (interval)

— SENSOR (power_grid == true)
1)
Actions:

— ENTITY.ON(light_switch)

— RULE_ON (2)

— RULE_OFF (1)
e Rule 2: Initial state is off.
Condition: AND ([
— CRON (interval)

— SENSOR (power_grid == false)
1)
Actions:

— ENTITY.OFF (light_switch)

— RULE_ON (1)

— RULE_OFF (2)
Notes This is a very simple exclusive two-state template, which corresponds

to the states of the light switch. The interval time should not be too fine
otherwise the light may start flickering in sync with this interval.

23

2.4.2 “Water Temp.”

Exact Definition:
e Variables:

CRON interval: When to check state.

CRON min_heat_interval: Interval time with the minimum
amount of running time for the heater. Example: "*/5 * * * *"
always runs the heater for at least 5 minutes and up to a maximum
of twice the interval (10 minutes).

INT hi_solar_surplus: Solar surplus amount in kW such that if
the solar surplus is above this value the water heater may be turned
on.

INT lo.water_temp: Temperature in degrees Celsius such that if
the temperature inside the water tank falls below this value the water
heater may be turned on.

SENSOR solar_surplus: Sensor ID of the solar power surplus in
kW.

SENSOR water_temp: Sensor ID of the water temperature inside
the water tank in degrees Celsius.

ENTITY DEVICE water_heater: Device ID of the heater warming
up the water tank.

e Rule 1: Initial state is on.
Condition: AND ([

D)

CRON (interval)
NUMERIC_SENSOR (solar_surplus > hi_solar_surplus)
NUMERIC_SENSOR (water_temp < lo_water_temp)

Actions:

ENTITY_ON (water_heater)
RULE_OFF (1)
RULE_ON (2)

e Rule 2: Initial state is off.
Condition: CRON (min_heat_interval)
Actions:

RULE_OFF (2)
RULE_ON (3)

e Rule 3: Initial state is off.
Condition: CRON (min_heat_interval)
Actions:

ENTITY_ON (water_heater)
RULE_OFF (3)
RULE_ON (1)

Notes To ensure the water pump running for at least a certain amount of time
this template was solved in three states. The first state (rule) ensures the pump
is turned on and then switches to the second state. This state only ticks down

24

the remaining time until min_heat_interval is triggered at which point the
third state waits for another trigger. This guarantees a full cycle of the interval
defined in min_heat_interval.

2.4.3 “Water Pump”

Exact Definition:
e Variables:

CRON interval: When to check state.

CRON min_pump_interval: Interval time with the minimum
amount of running time for the pump. Example: "x/30 * x *
*+" always runs the pump for at least 30 minutes and up to a maxi-
mum of twice the interval (60 minutes).

INT lo_water_tank: Tank level in percent such that if the tank
level falls below this value the pump is turned on.

SENSOR water_tank: Sensor ID of the water tank level in percent.
ENTITY DEVICE water_pump: Device ID of the water pump.

e Rule 1: Initial state is on.
Condition: AND ([

CRON (interval)

— NUMERIC_SENSOR (water_tank < lo_water_tank)

1)

Actions:

ENTITY_ON (water_pump)
RULE_OFF (1)

— RULE_ON (2)
e Rule 2: Initial state is off.
Condition: CRON (min_pump_interval)
Actions:
— RULE_OFF (2)
— RULE_ON (3)
e Rule 3: Initial state is off.
Condition: CRON (min_pump_interval)
Actions:
— ENTITY_ON (water_pump)
— RULE_OFF (3)
— RULE_ON (1)

Notes This template essentially works the same way as the “Water Temp.”

template.

25

2.4.4 “Load Battery”

Exact Definition:
e Variables:
— CRON start_time: When to start charging.
— CRON stop-time: When to stop charging.
— ENTITY.DEVICE battery: Device ID of the charger to turn on.
e Rule 1: Initial state is on.
Condition: CRON (start_time)
Actions:
— ENTITY ON (battery)
— RULE_OFF (1)
— RULE_ON (2)
e Rule 2: Initial state is off.
Condition: CRON (stop_time)
Actions:
— ENTITY_OFF (battery)
— RULE_ON (1)
— RULE_OFF (2)

Notes Alternatively, the TIME condition can be used for both rules.

26

2.4.5 “Bathroom Temp.”

Exact Definition:
e Variables:
— CRON interval: When to check state.
— INT lo-temp: Temperature in degrees Celsius such that if the sensor
temperature falls below this value the heater is turned on.
— INT hi_temp: Temperature in degrees Celsius such that if the sensor
temperature goes above this value the heater is turned off.
— SENSOR temp: Sensor ID of the bathroom temperature in degrees
Celsius.
— ENTITY.DEVICE heater: Device ID of the heater to turn on.
e Rule 1: Initial state is on.
Condition: AND ([
— CRON (interval)
— NUMERIC_SENSOR (temp < lo_temp)
1)
Actions:
— ENTITY.ON (heater)
— RULE_OFF (1)
— RULE_ON (2)
e Rule 2: Initial state is off.
Condition: AND ([
— CRON (interval)
— NUMERIC_SENSOR (temp > hi_temp)
1)
Actions:
— ENTITY_OFF (heater)
— RULE_ON (1)
— RULE_OFF (2)

Notes To ensure the heater is not constantly being turned on and off again
one should ensure hi_temp — lo_temp > 1.

27

2.5 Implementation Specifics

This section dives into the specific implementation of the template system in
the Honua backend [8]. To reiterate, the code is written in Go and it uses both
structs with receiver methods and generic interfaces. Often, it uses a type-based
approach which is required for serialization. Generally speaking, the code was
designed to be loosely coupled and easily extendable.

2.5.1 Templates & Rules

The entire rule system is executed by simply running the Tick method of a
TemplateManager instance (of which there is a singleton) as referenced in
Appendix A.21. It simply iterates over all template instances, checks whether
or not they are active, and executes them if so. This method ensures execution
exactly once per second and accounts for being called too quickly or too slowly.

It is very important to understand that the Template struct refers to a tem-
plate—a blueprint—and TemplateInstance contains this blueprint together
with all the configurations needed to run it as referenced in Appendix A.22. A
template instance is executed by running the Execute method where all rules,
which are active are executed. For this it logs first which rules are active and
then executes all of them otherwise there could be a case where rule ¢ changes
the state of rule 7 + 1 during its iteration and when ¢ + 1 is now checked this
yields a different result than before.

For rules, there are again Rule and RuleInstance structs as referenced in
Appendix A.19. The Execute method of a rule instance first checks whether
or not the condition is satisfied and, if so, executes all actions.

An IContext instance (Appendix A.10) is created in the template instance
on every execution that exposes access to different parts of the system, namely
variables, the database, and the Home Assistant API and it is passed down to
all lower components.

Actions are defined by the TAction interface and are type-based as referenced
in Appendix A.1. Every action type is defined in the . proto file and registered
in the ActionFromService function which is used for deserializing. The
action method ToService is for serialization.

Conditions are also type-based. Each condition implements the ICondition
interface in Appendix A.9. Again, every condition type is defined in the .proto
file and registered in the ConditionFromService function.

Conditions often use context variables for configuration, which are defined in
ctxvar as referenced in Appendix A.11. A context variable is either a static
value represented by the struct ImmediateCtxVar (used to “hardcode” values
into templates) or it is derived from the context where it is represented by the
struct ReferencedCtxVar (used to make values in templates configurable).

Each context variable, of course, is defined on a data type. Data types are

28

docker build
—-platform linux/amdé64,linux/arm64
—-—tag TEMP_LAYERNAME

Figure 4: Building a Docker Image

docker tag TEMP_LAYERNAME USERNAME/LAYERNAME

Figure 5: Tagging a Docker Image

type-based singletons. They all have a defined type in the .proto file and all
implement the IDataType interface (Appendix A.18). Every singleton is regis-
tered in the GetDataType function and has an additional optional convenience
function to resolve context variables quickly (usually named GetValue).

3 Installation & Deployment

3.1 Raspberry Pi

To install the Honua docker stack on the Raspberry Pi you first must install
Raspberry Pi OS on it. Setup WiFi access properly such that the Pi can connect
to it and enable SSH. For SSH credentials only use lowercase letters for username
and password as digits and any form of symbols causes issues.

After everything is done, connect the Pi to a power source. It should now
automatically connect to WiFi and then be accessible via SSH. Using this access,
you can now install Docker on it and start the Honua Docker stack as usual.

3.2 Creating Docker Images on Docker Hub

Firstly, you must have a Docker Hub account and be ready to build the image.
So, to start you build it using the command shown in Figure 4. For the plat-
forms, amd64 is used to support widespread systems and armé64 is required to
be able to run on the Raspberry Pi. The TEMP_LAYERNAME is just the tem-
porary name to identify this build on the local machine. The . is the folder,
which to build (hence this works by running it inside the build folder).

Next, you must tag this image by using the command shown in Figure 6.
USERNAME is your Docker Hub username and LAYERNAME is what its final

docker tag TEMP_LAYERNAME USERNAME/LAYERNAME

Figure 6: Tagging a Docker Image

29

docker push USERNAME/LAYERNAME

Figure 7: Pushing a Docker Image

docker compose up

Figure 8: Running a Docker Stack

identifier is going to be.

Lastly, push the image to Docker Hub using the command shown in Figure 7.
Now, the image is available under that identifier for your Docker stacks.

3.3 Deploying the Docker Stack

To deploy and run a Docker stack all that is needed is the .yaml file that
defines it and the command in either Figure 8 or Figure 9 where the —d option
means “detached” from the current console (the command must be run next to
the .yaml file). To stop it again simply run the command shown in Figure 10.

3.4 gRPC & Protocol Buffer (protoc)

To generate the protocol code for the Honua backend you have to successfully
install protoc and then run the command shown in Figure 11 (this command
can also be seen in the MAKEFILE file).

4 More Solutions

Here we explain other things which were done as part of this project but can be
seen as separate sub-projects.

4.1 Template Frontend App Prototype

To present the template system a frontend prototype was created. This proto-
type mimics functional templates and lets you configure them. Figure 12a shows
a simple overview over all configured and active rules. By clicking on that rule
you get to the screen shown in Figure 12b which essentially opens a form based
on the required input of the template described previously as “Office Light”.

docker compose up —-d

Figure 9: Running a Docker Stack in Detached Mode

30

docker compose down

Figure 10: Stopping a Docker Stack in Detached Mode

protoc

——go_out=.
——go—grpc_out=.
./resources/*.proto

Figure 11: Generating Honua protoc Code

10:56 & O @ @
= Honua Configurator

Licht Biro
‘enn Stromnetz da schalte Biiro-Licht an, sonst aus

Name

Licht Biiro

Beschreibung
Wenn Stromnetz da schalte Biro-Lich

Zeit Intervall
*/5 % * k%

Sensor
Grid verfligbar

Geréit
Licht - Biro

[J Invertieren

Submit

Neue Regel Fertig

(a) Overview Screen (b) Edit Template Screen

Figure 12: Prototype Overview & Edit Rule Screens

31

Name

Heizung Bad

Beschreibung
Temperatur konstant halten

Licht Biiro
Wenn Stromnetz da schalte Biiro-Licht an,
sonst aus

Temperatursensor

Batterie Laden
Zu bestimmten Zeiten das Laden der
Batterie durchfihren
Heizung Bad
Temperatur konstant halten Temperatur zum Einschalten

Heizung

Temperatur zum Ausschalten

Submit

(a) New Rule, Select Template Screen (b) Configure Template Screen

Figure 13: Prototype New Rule Configuration

The first two fields are always “Name” and “Description” for identification rea-
sons for the user. Next, we generate dynamical form fields based on the inputs
(and their data types) required by the template. The first one is a cron input.
Of course, one could implement a proper screen here for cron configuration but
for sakes of a prototype this is sufficient. Next, we select sensors and devices.
The list of sensors and devices to choose from is gathered when starting the app
and logging in. Finally, there is an additional field not mentioned previously
which represents a boolean (to invert the sensor state).

New rules can also be added as shown in Figure 13a which shows a template
selection and leads to Figure 13b where you get to another form as shown before.
The last two fields of this form are integer inputs.

This prototype serves to show how powerful this template system can be where
very powerful and unique rule templates can be created but all that is shown
to the user is a very simple configuration screen where each input entry is
dynamically generated based on its data type.

4.2 cron Package

A separate and independent cron go package was created to add a standard
cron job implementation to the project. It features wildcards (x), value list
separators (,), range of values (-), and step values (/) for minute, hour, day of

32

Server-Listener

o]

Client Server

Figure 14: Client-Server Connection with Port Forwarding

,,,,,,,,,, SSH-Tunnel .

: SSH-Connection SSH-Connection :

| . . |

])]
—© B O
Clomt SiSover Sorver

Figure 15: Client-Server Connection over SSH-Tunnel

month, month, and day of week. It supports deserializing cron strings to objects
and vice versa and it works with go time.Time values [9].

github.com/CAS-ual-TY/simple_go_cron is the module name and the
value used for importing the whole package.

4.3 SSH Tunnel Package & Image

github.com/CAS-ual-TY/sshtunnel?2 is another go package made specifi-
cally for this project. It allows you to create SSH tunnels to forward connections
and circumvent port forwarding requirements. This way the entire public back-
end is not needed anymore as the frontend is now able to establish a connection
to the private backend [10].

First, the server creates a reverse connection to an SSH server, i.e. it estab-
lishes an ordinary SSH connection with credentials and then it listens for a
local connection on that SSH server. Anything sent to that connection is then
transported via SSH to the server and forwarded to a target.

Once the server has established a listener on the SSH server, the client connects
via SSH and listens locally (on the client) for a connection. Again, everything
sent to that connection is forwarded to the SSH server into a local target, which
in this case needs to be the listener of the server.

The application now simply targets the local SSH connection instead of the
direct server address to reach the server. This allows the server to become

33

reachable without any port forwarding whatsoever as shown in Figure 15.

The entire SSH functionality is also provided as docker images in the docker hub
as plusluist/sshtunnel2_client (client to SSH server) and, of course,
plusluist/sshtunnel2_server (SSH server to server). They are config-
ured via the following environment variables:

e SSHHOST: The SSH server host.

e SSHPORT: The SSH server port.

e SSHUSER: The SSH user.

e SSHPASSWORD: The SSH password.

e LPORT: The local port, i.e. where the tunnel listens at on the client or
where the tunnel forwards to on the server.

e RPORT: The SSH local connection port. Must be the same on client and
server.

e TARGET: Where to forward to on the server (default is localhost) in
case it is not local.

plusluist/ssh_server is another docker hub image which only provides a
local SSH server to use the tunnel on.

4.4 Additional Honua Changes

As mentioned already, the entire public backend was removed and, as such, any
code that functioned as synchronization between private and public backend.

It is also worth mentioning that the original rule system was first cleaned up
and rewritten before it was eventually replaced by the template system entirely.

Additionally, a bunch of general improvements were made. The most prominent
example is the proper listening to an interrupt signal by the operating system
for shutdown.

4.5 Future Extension Possibilities

Finally, we discuss a bunch of extension possibilities.

Test Context The IContext interface could be changed such that condi-
tions and actions do not access the database directly but rather do all state
checks and modifications on the interface. This would allow a separate imple-
mentation of this context with emulated sensors and devices.

Context Variables Right now context variables only serve as settings for
conditions and actions. Additional conditions and actions could be introduced
which simply create, compare, and modify such variables. These variables could

34

ssh -N -L
9000:1ocalhost:8080
user@sshserver.com —-p 22

Figure 16: SSH Forward Tunnel Command on Debian

ssh -N -R
8080:1localhost:9000
user@sshserver.com -p 22

Figure 17: SSH Reverse Tunnel Command on Debian

then be set to be persistent with restarts or not. This would allow things like
counters or countdowns.

Lazy Evaluation on Aggregate Conditions Aggregate condition types
could be expanded with another boolean variable which defines whether or not
they are lazily evaluated (for the case where condition checks modify the state
or force a reloading of cached states).

Optional Data Types Add proper support for optionals and register them
as data type. Right now these are only used for the TimeCondition and can
only be hardcoded in the template. The reason being that this condition type
can be fully replaced by the CronCondition.

More State Refreshing Right now it is possible that multiple template
instance ticks are being done without a state check in between. For this, the loop
which controls template execution to happen exactly once per second needs to
be executed higher in the structure to include state refreshing. The real question
to ask would be whether or not a state check every second would actually be
needed or not.

Frontend Views The backend was designed with the ability in mind to have
different views on the same system. The best example for this is a graphical user
interface that lets the user configure a week-day based schedule. In reality this
schedule would be implemented using aggregation conditions in combination
with cron conditions.

SSH Tunnel Improvement There are two different improvements that can
be made to the SSH tunnel image of the Docker stack:

e The TARGET is only used server-side right now. Extend it such that on
client-side this is the IP that is listened on. Systems can be connected

35

to different networks and this would allow a precise choice (right now the
client always listens on localhost).

It might be possible to replace the entire Go application with pure SSH
commands which are shown in Figures 16 and 17 where

— 9000 is LPORT,

— localhost is TARGET,

— 8080 is RPORT,

— user is SSHUSER,

— sshserver.com is SSHHOST,
— and 22 is SSHPORT.

Of course, this includes the previously mentioned client-side improvement
to TARGET.

It is important to note that while it is easy to establish a tunnel using
these commands, the difficulty in creating a Docker image based only on
these commands is having it be resilient in case the SSH connection is lost.
In such cases, it must be reestablished quickly and securely.

The advantages would be having less code to maintain and, if the image
is really able to reconnect on its own, it would be faster and more resilient
(assuming that native Debian SSH code works better than custom Go
code).

36

5
1]

References

Open Home Foundation. Documentation - Home Assistant.
https://www.home—-assistant.io/docs/, 2025.

The Go Authors. Documentation - The Go Programming Language.
https://go.dev/doc/, 2025.

gRPC Authors. Documentation | gRPC.
https://grpc.io/docs/, 2025.

The PostgreSQL Global Development Group. PostgreSQL: Documenta-
tion.
https://www.postgresqgl.org/docs/, 2025.

MongoDB Inc. What is MongoDB? - Database Manual - MongoDB Docs.
https://www.mongodb.com/docs/manual/, 2025.

Docker Inc. Docker Docs.
https://docs.docker.com/, 2025.

Raspberry Pi Ltd. Raspberry Pi Documentation.
https://www.raspberrypi.com/documentation/, 2025.

Jonas Bordewick, Luis Thiele. Honua Backend Source Code.
https://github.com/CAS-ual-TY/honua_local_backend, 2025.

Luis Thiele. github.com/CAS-ual-TY /simple_go_gron go package.
https://github.com/CAS-ual-TY/simple_go_cron, 2025.

Luis Thiele. github.com/CAS-ual-TY /sshtunnel2 go package.
https://github.com/CAS—-ual-TY/sshtunnel2, 2025.

37

A Template System

A.1 action.go

1 package rules

3 import (

4 "errors"

5 "github.com/CAS-ual-TY/honua_local_backend/service"
6 "time"

7)

o type ActionType service.Action_ActionType

11 func (t ActionType) ToService () service.Action_ActionType {
12 return service.Action_ActionType (t)

15 type IAction interface {

16 GetType () ActionType
17 Execute (ctx IContext, t time.Time) error
18 ToService () (*service.Action, error)

20

21 type Action struct({}

22

23 type TypeBasedAction struct ({

24 Type ActionType

25 }

26

27 func (a *TypeBasedAction) GetType() ActionType {
28 return a.Type

29 }

30

31 type SetEntityStateAction struct {

32 TypeBasedAction
33 Entity ICtxVar
34 }

35
36 func (a *SetEntityStateAction) Execute(ctx IContext, t time.Time) error {

37 entity, err := DeviceDataType.GetValue(a.Entity, ctx)

38 if err !'= nil {

39 return err

40 }

41 if a.Type.ToService() == service.Action_ENTITY_ON ({

42 return ctx.GetAPI () .HomeassistantGenericTurnOn (entity)
43 } else if a.Type.ToService() == service.Action_ENTITY_OFF {

44 return ctx.GetAPI () .HomeassistantGenericTurnOff (entity)
45 } else {

46 return errors.New ("invalid action'")

a7 }

48 }

49

50 func (a *SetEntityStateAction) ToService() (*service.Action, error) {
51 entity, err := a.Entity.ToService()

52 if err != nil {

53 return nil, err

54 }

55 if a.Type.ToService() == service.Action_ENTITY_ON {

38

56

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

102

103

104

105

107

108

109

112

113

114

return &service.Action{
ActionType: service.Action_ENTITY_ON,
Action: &service.Action_EntityAction{
EntityAction: &service.EntityAction{
EntityId: entity,
by
}I
}, nil
} else if a.Type.ToService() == service.Action_ENTITY_OFF ({
return &service.Action{
ActionType: service.Action_ENTITY_OFF,
Action: &service.Action_EntityAction{
EntityAction: &service.EntityAction{
EntityId: entity,
by
}I
}, nil
} else {
return nil, errors.New("invalid action™)

func EntityStateActionFromService (a *service.Action) (xSetEntityStateAction,

entity, err := CtxVarFromService (a.GetEntityAction() .GetEntityId())
if err != nil {

return nil, err
}
return &SetEntityStateAction({

TypeBasedAction: TypeBasedAction{

Type: ActionType (a.ActionType),

}I

Entity: entity,
}, nil

type SetRuleStateAction struct ({
TypeBasedAction
RuleID uint32

func (a *SetRuleStateAction) Execute (ctx IContext, t time.Time) error {

if a.Type.ToService() == service.Action_RULE_ON {
return ctx.EnableRule (a.RulelD)

} else if a.Type.ToService() == service.Action_RULE_OFF {
return ctx.DisableRule (a.RulelD)

} else {

return errors.New("invalid action™)

func (a *SetRuleStateAction) ToService() (xservice.Action, error) {
if a.Type.ToService () == service.Action_RULE_ON {
return &service.Action{
ActionType: service.Action_RULE_ON,
Action: &service.Action_RuleAction{
RuleAction: &service.RuleAction{
RulelId: a.RulelD,
}I
}I
}, nil

39

error)

{

130

131

132

133

} else if a.Type.ToService() == service.Action_RULE_OFF {
return &service.Action{
ActionType: service.Action_RULE_OFF,
Action: &service.Action_RuleAction{
RuleAction: &service.RuleAction{
RuleId: a.RulelD,
}I
}I
}, nil
} else {
return nil, errors.New("invalid action™)

func RuleActionFromService (a *service.Action) (*xSetRuleStateAction,
return &SetRuleStateAction{
TypeBasedAction: TypeBasedAction{
Type: ActionType (a.ActionType),
}I
RuleID: a.GetRuleAction () .GetRuleId(),
}, nil

func ActionFromService(a *service.Action) (IAction, error) {
switch a.GetActionType () {
case service.Action_ENTITY_ON:
return EntityStateActionFromService (a)
case service.Action_ENTITY OFF:
return EntityStateActionFromService (a)
case service.Action_RULE_ON:
return RuleActionFromService (a)
case service.Action_RULE_OFF:
return RuleActionFromService (a)

return nil, ErrUnknownType

error)

{

40

A.2

condition_aggregate.go

W N

o

20

21

22

23

24

25

26

27

28

29

30

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

package rules

import (
"github.com/CAS—-ual-TY/honua_local_backend/service"
"time"

type AggregateCondition struct {
TypeBasedCondition
Conditions []ICondition

func (c *AggregateCondition) CheckCondition(ctx IContext, t time.Time) (bool,
switch service.Condition_ConditionType (c.Type) {
case service.Condition_OR:

for _, cond := range c.Conditions {
result, err := cond.CheckCondition(ctx, t)
if err != nil {

return false, err
}
if result {

return true, nil

}
return false, nil
case service.Condition_AND:

for _, cond := range c.Conditions {
result, err := cond.CheckCondition (ctx, t)
if err !'= nil {

return false, err

}
if !'result {
return false, nil

}

return true, nil
default:
return false, nil

func (c xAggregateCondition) ToService() (*service.Condition, error) ({

conditions := make([]*service.Condition, len(c.Conditions))
for _, co := range c.Conditions {

cos, err := co.ToService ()

if err !'= nil {

return nil, err

}

conditions = append(conditions, cos)

return &service.Condition{
ConditionType: service.Condition_ConditionType (c.GetTypel()),
Condition: é&service.Condition_AggregateCondition({
AggregateCondition: &service.AggregateCondition{
SubConditions: conditions,
}I

41

error)

{

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

76

77

78

}, nil

func AggregateConditionFromService (c xservice.Condition) (xAggregateCondition,

—

conditions := make([]ICondition,
— len(c.GetAggregateCondition () .GetSubConditions()),
— len(c.GetAggregateCondition () .GetSubConditions()))

for i, cl := range c.GetAggregateCondition() .GetSubConditions ()
c2, err := ConditionFromService (cl)
if err != nil {

return nil, err
}
conditions[i] = c2
}
return &AggregateCondition{
TypeBasedCondition: TypeBasedCondition({
Condition: Condition{},
Type: ConditionType (c.ConditionType),
}!
Conditions: conditions,
}, nil

{

error)

42

A.3 condition cron.go

1 package rules

M)

import (
"github.com/CAS—-ual-TY/honua_local_backend/service"

~ow

"time"

o

8 type CronCondition struct {
9 Condition
10 Cron ICtxVar

13 func (c *CronCondition) CheckCondition(ctx IContext, t time.Time) (bool, error) {

14 cron, err := CronDataType.GetValue(c.Cron, ctx)
15 if err != nil {

16 return false, err

17 }

18 return cron.TimeMatches (t), nil

20
21 func (¢ *CronCondition) GetType () ConditionType {

22 return ConditionType (service.Condition_CRON)

23 }

24

25 func (¢ x*CronCondition) ToService() (*xservice.Condition, error) ({

26 cron, err := c.Cron.ToService()

27 if err != nil {

28 return nil, err

29 }

30 return &service.Condition{

31 ConditionType: service.Condition_ConditionType (c.GetType()),
32 Condition: &service.Condition_CronCondition{

33 CronCondition: &service.CronCondition{

34 Cron: cron,

35 s

36 } 4

37 }, err

38 }

39

40 func CronConditionFromService (c *service.Condition) (xCronCondition, error) ({
11 cron, err := CtxVarFromService (c.GetCronCondition () .GetCron())
42 if err != nil {

43 return nil, err

14 }

45 return &CronCondition({

16 Condition: Conditionf{},

a7 Cron: cron,

48 }, nil

49 }

43

A.4 condition immediate.go

Bw N

o

20

21

22

23

24

25

26

27

28

29

30

32

33

34

35

36

37

38

39

40

41

42

43

44

46

47

package rules

import (
"github.com/CAS—-ual-TY/honua_local_backend/service"
"time"

type ImmediateCondition struct {
Condition
Bool ICtxVar

func (¢ *ImmediateCondition) CheckCondition(ctx IContext, t time.Time) (bool,
return BoolDataType.GetValue (c.Bool, ctx)

func (c *ImmediateCondition) GetType () ConditionType {
return ConditionType (service.Condition_IMMEDIATE)

func (¢ *ImmediateCondition) ToService () (*service.Condition, error) {
v, err := c.Bool.ToService()

if err != nil {
return nil, err

return &service.Condition{
ConditionType: service.Condition_ConditionType (c.GetTypel()),
Condition: &service.Condition_ImmediateCondition{
ImmediateCondition: &service.ImmediateCondition{
Bool: v,
}I
}I
}, nil

func ImmediateConditionFromService (c *xservice.Condition) (*ImmediateCondition,
—
bool, err := CtxVarFromService (c.GetImmediateCondition () .GetBool())
if err !'= nil {
return nil, err
}
return &ImmediateCondition{
Condition: Conditionf{},
Bool: bool,
}, nil

error)

error)

{

44

A.5 condition not.go

1 package rules

M)

import (
"github.com/CAS—-ual-TY/honua_local_backend/service"

~ow

"time"

o

8 type NotCondition struct ({
9 Condition
10 SubCondition ICondition

13 func (c *NotCondition) CheckCondition(ctx IContext, t time.Time) (bool, error) {

14 result, err := c.SubCondition.CheckCondition(ctx, t)
15 if err != nil {

16 return false, err

17 }

18 return !result, nil

20
21 func (c *NotCondition) GetType () ConditionType {

22 return ConditionType (service.Condition_NOT)

23 }

24

25 func (c x*NotCondition) ToService() (*service.Condition, error) {

26 sub, err := c.SubCondition.ToService ()

27 if err != nil {

28 return nil, err

29 }

30 return &service.Condition{

31 ConditionType: service.Condition_ConditionType (c.GetTypel()),
32 Condition: &service.Condition_NotCondition{

33 NotCondition: &service.NotCondition{

34 SubCondition: sub,

35 s

36 b

37 }, nil

38 }

39

40 func NotConditionFromService (c xservice.Condition) (*NotCondition, error) {
41 sub, err := ConditionFromService (c.GetNotCondition () .GetSubCondition())
42 if err != nil {

43 return nil, err

14 }

45 return &NotCondition{

16 Condition: Condition{},

a7 SubCondition: sub,

48 }, nil

49 }

45

A.6 condition numeric sensor.go

1 package rules

M)

import (
"github.com/CAS—-ual-TY/honua_local_backend/service"
"time"

~ow

o

8 type NumericSensorCondition struct {

9 Condition

10 NumericSensor ICtxVar

11 Minimum OptionalFloat

12 Maximum OptionalFloat

13 }

14

15 func (c *NumericSensorCondition) CheckCondition(ctx IContext, t time.Time) (bool,
— error) {

16 sensor, err := NumericSensorDataType.GetValue (c.NumericSensor, ctx)

17 if err != nil {

18 return false, err

19 }

20 if c.Minimum.IsPresent () {

21 if c.Minimum.Get () > sensor {

22 return false, nil

23 }

24 }

25 if c.Maximum.IsPresent () {

26 if c.Maximum.Get () < sensor {

27 return false, nil

28 }

29 }

30 return true, nil

31 }

32

33 func (c *NumericSensorCondition) GetType () ConditionType {

34 return ConditionType (service.DataTypeType_ NUMERIC_SENSOR)

35 }

36

37 func (c x*NumericSensorCondition) ToService() (xservice.Condition, error) {

38 sensor, err := c.NumericSensor.ToService ()

39 if err !'= nil {

40 return nil, err

41 }

42 return &service.Condition{

43 ConditionType: service.Condition_ConditionType (c.GetTypel()),

44 Condition: &service.Condition_NumericStateCondition({

45 NumericStateCondition: &service.NumericStateCondition{

46 NumericSensor: sensor,

a7 Minimum: c.Minimum.ToService (),

48 Maximum: c.Maximum.ToService (),

49 I

50 } ’

51 }, nil

52 }

53

54 func NumericSensorConditionFromService (c *service.Condition) (*NumericSensorCondition,

— error) {
55 numericSensor, err :=
— CtxVarFromService (c.GetNumericStateCondition () .GetNumericSensor ())

46

56

58

59

60

61

62

63

64

65

66

67

if

}

minimum
maximum

err

'= nil {

return nil, err

:= OptionalFloatFromService (c.GetNumericStateCondition () .Minimum)
:= OptionalFloatFromService (c.GetNumericStateCondition () .Maximum)

return &NumericSensorCondition({
Condition{},

by

nil

Condition:
NumericSensor:
Minimum:
Maximum:

numericSensor,

minimum,
maximum,

47

A.7 condition sensor.go

Bw N

o

20

21

22

23

24

25

26

27

28

29

30

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

package rules

import (
"github.com/CAS—-ual-TY/honua_local_backend/service"
"time"

type SensorCondition struct {
Condition
Sensor ICtxVar
RequiredState ICtxVar

func (¢ *SensorCondition) CheckCondition(ctx IContext, t time.Time) (bool, error)

sensor, err := SensorDataType.GetValue (c.Sensor, ctx)
if err != nil {
return false, err
}
requiredState, err := BoolDataType.GetValue (c.RequiredState, ctx)
if err !'= nil {
return false, err
}

return sensor == requiredState, nil

func (c *SensorCondition) GetType () ConditionType {
return ConditionType (service.DataTypeType_SENSOR)

func (¢ *SensorCondition) ToService () (*service.Condition, error) {
sensor, err := c.Sensor.ToService ()
if err !'= nil {

return nil, err
}
requiredState, err := c.RequiredState.ToService ()
if err != nil {
return nil, err
}
return &service.Condition{
ConditionType: service.Condition_ConditionType (c.GetTypel()),
Condition: &service.Condition_StateCondition{
StateCondition: &service.StateConditionf{
Sensor: sensor,
RequiredState: requiredState,
}I
}V

}, nil

}

func SensorConditionFromService (c xservice.Condition) (*SensorCondition, error)
sensor, err := CtxVarFromService (c.GetStateCondition () .GetSensor())
if err !'= nil {

return nil, err
}
requiredState, err :=
— CtxVarFromService (c.GetStateCondition () .GetRequiredState())
if err != nil {
return nil, err

48

{

{

58

60

61

62

63

64

}

return &SensorCondition{
Condition: Condition{},
Sensor: sensor,
RequiredState: requiredState,

}, nil

49

A.8 condition time.go

Bw N

o

20

21

22

23

24

25

26

27

28

29

30

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

package rules

import (
"github.com/CAS—-ual-TY/honua_local_backend/service"
"time"

type TimeCondition struct {
Condition
IntMinuteStart ICtxVar
IntMinuteEnd ICtxVar

func (¢ *TimeCondition) CheckCondition(ctx IContext, t time.Time) (bool, error)
start, err := IntDataType.GetValue (c.IntMinuteStart, ctx)
if err != nil {
return false, err
}
end, err := IntDataType.GetValue (c.IntMinuteStart, ctx)
if err !'= nil {
return false, err
}
minute := t.Hour ()*60 + t.Minute()
if start <= end {
return minute >= start && minute < end, nil
} else {
return minute >= start || minute < end, nil
}
}
func (¢ *TimeCondition) GetType () ConditionType {
return ConditionType (service.Condition_TIME)
}
func (¢ *TimeCondition) ToService() (xservice.Condition, error) ({
start, err := c.IntMinuteStart.ToService()
if err != nil {
return nil, err
}
end, err := c.IntMinuteEnd.ToService ()
if err !'= nil {
return nil, err
}
return &service.Condition{
ConditionType: service.Condition_ConditionType (c.GetTypel()),
Condition: &service.Condition_TimeCondition/{
TimeCondition: &service.TimeCondition{
IntMinuteStart: start,
IntMinuteEnd: end,
}I
}I
}, nil
}
func TimeConditionFromService (c *service.Condition) (xTimeCondition, error) ({

50

{

59

60

61

62

63

64

65

66

67

68

69

70

71

72

start, err := CtxVarFromService (c.GetTimeCondition () .GetIntMinuteStart ())
if err != nil {
return nil, err
}
end, err := CtxVarFromService (c.GetTimeCondition () .GetIntMinuteEnd())
if err !'= nil {
return nil, err
}
return &TimeCondition{

Condition: Condition{},
IntMinuteStart: start,
IntMinuteEnd: end,

}, nil

51

A.9 condition.go

1 package rules

M)

import (
"github.com/CAS—-ual-TY/honua_local_backend/service"

~ow

"time"

o

8 type ConditionType service.Condition_ConditionType

10 func (t ConditionType) ToService() service.Condition_ConditionType {
11 return service.Condition_ConditionType (t)

14 type ICondition interface {

15 GetType () ConditionType
16 CheckCondition(ctx IContext, t time.Time) (bool, error)
17 ToService () (*service.Condition, error)

20 type Condition struct{}

21

22 type TypeBasedCondition struct ({

23 Condition

24 Type ConditionType

25 }

26

27 func (c *TypeBasedCondition) GetType () ConditionType {
28 return c.Type

29 }

30

31 func ConditionFromService (c *service.Condition) (ICondition, error) ({
32 switch c.GetConditionType () {

33 case service.Condition_IMMEDIATE:

34 return ImmediateConditionFromService (c)
35 case service.Condition_NOT:

36 return NotConditionFromService (c)

37 case service.Condition_OR:

38 return AggregateConditionFromService (c)
39 case service.Condition_AND:

40 return AggregateConditionFromService (c)
41 case service.Condition_NUMERIC_SENSOR:

42 return NumericSensorConditionFromService (c)
43 case service.Condition_SENSOR:

14 return SensorConditionFromService (c)

45 case service.Condition_TIME:

46 return TimeConditionFromService (c)

47 case service.Condition_CRON:

48 return CronConditionFromService (c)

49 default:

50 break

51 }

52

53 return nil, ErrUnknownType

54 }

52

A.10 context.go

1

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

package rules

import (
"github.com/CAS-ual-TY/honua_local_backend/database"
"github.com/CAS-ual-TY/honua_local_backend/homeassistant_api"
"github.com/CAS-ual-TY/honua_local_backend/server"

type IContext interface {
GetDB () =~database.HonuaDB
GetAPI () xhomeassistant_api.HomeAssistantAPI
EnableRule (ruleID uint32) error
DisableRule (ruleID uint32) error
GetReference (id string, dataTypeType DataTypeType) (any, error)

// ge

— methods not possible yet in go: https://github.com/golang/go/issues/49085

}

type Context struct {
server *server.HonuaServer
template xTemplatelInstance

func (ctx *Context) GetDB() =xdatabase.HonuaDB {
return ctx.server.GetDB ()

func (ctx *Context) GetAPI() *homeassistant_api.HomeAssistantAPI ({
return ctx.server.GetAPI ()

func (ctx xContext) EnableRule (ruleID uint32) error {
return ctx.template.EnableRule (rulelD)

func (ctx *Context) DisableRule (ruleID uint32) error {
return ctx.template.DisableRule (rulelD)

func (ctx *Context) GetReference (id string, dataTypeType DataTypeType)
return ctx.template.GetReference (id, dataTypeType)

(any,

neric

error)

{

53

A.11 ctxvar.go

1 package rules

M)

import (
"errors"
"github.com/CAS-ual-TY/honua_local_backend/service"

oW

o

8 var ErrWrongCtxVarType error = errors.New("ctx var is wrong data type'")
9 var ErrUnknownDataType error = errors.New("unknown data type™)

11 type ICtxVar interface ({

12 GetVarID() string

13 GetDataType () IDataType

14 GetValue (ctx IContext) (any, error)

15 TypeAssert (immediate func (xImmediateCtxVar), referenced func(ctxVar
— xReferencedCtxVar))

16 ToService () (*service.CtxVar, error)

19 type CtxVar struct {

20 VarName string

21 VarID string

22 DataType IDataType

23 }

24

25 func CtxVarFromService (v0 *xservice.CtxVar) (ICtxVar, error) ({
26 dtt := DataTypeType (v0.Type)

27 dt := GetDataType (dtt)

28 if dt == nil {

29 return nil, ErrUnknownDataType

30 }

31

32 v := CtxVar/{

33 VarName: v0.Name,

34 VarID: v0.Id,

35 DataType: dt,

36 }

37

38 if v0.GetReference () != nil {

39 return ReferencedCtxVarFromService (v, vO0)
40 } else if v0.GetImmediate() !'= nil {

41 return ImmediateCtxVarFromService (v, vO0)
42 }

43

44 return nil, errors.New("can not deserialize ctx var'")
45 }

46

47 func (v *CtxVar) GetVarID() string {

48 return v.VarID

19 }

50
51 func (v *CtxVar) GetDataType () IDataType {
52 return v.DataType

53 }

55 type ImmediateCtxVar struct ({
56 CtxVar
57 Value any

54

58

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

87

88

89

90

91

92

93

94

95

96

97

98

99

100

102

103

104

105

107

108

109

func (v *ImmediateCtxVar) GetValue (ctx IContext) (any, error) {
return v.Value, nil

func (v »ImmediateCtxVar) TypeAssert (immediate func (xImmediateCtxVar), referenced
— func (ctxVar *ReferencedCtxVar)) {
immediate (v)

func (v *ImmediateCtxVar) ToService () (*service.CtxVar, error) {
bs, err := v.DataType.Serialize(v.Value)
if err !'= nil {

return nil, err

return &service.CtxVar/{
Name: v.VarName,
Id: v.VarlD,
Type: service.DataTypeType (v.DataType.GetType()),
Var: &service.CtxVar_Immediate(
Immediate: &service.Immediate(

Value: bs,
}I
}I

}, nil
}
func ImmediateCtxVarFromService (v CtxVar, v0 xservice.CtxVar) (xImmediateCtxVar,
— error) {

val, err := v.DataType.Deserialize (v0.GetImmediate () .Value)

if err != nil {
return nil, ErrWrongType
}
return sImmediateCtxVar{
CtxVar: v,
Value: val,
}, nil

type ReferencedCtxVar struct ({
CtxVar
ReferencelD string

func (v *ReferencedCtxVar) GetValue (ctx IContext) (any, error) {
t, err := ctx.GetReference (v.ReferencelD, v.GetDataType () .GetType())
if err !'= nil {

return nil, err

}

return t, nil

func (v *ReferencedCtxVar) TypeAssert (immediate func (xImmediateCtxVar), referenced
— func (ctxVar xReferencedCtxVar)) {
referenced (v)

55

115 func (v x*ReferencedCtxVar) ToService() (*service.CtxVar, error) ({

116 return &service.CtxVar({

117 Name: v.VarName,

118 Id: v.VarlD,

119 Type: service.DataTypeType (v.DataType.GetType()),

120 Var: &service.CtxVar_Reference(

121 Reference: &service.Reference{

122 Id: v.VariID,

123 },

124 Yy

125 }, nil

126 }

127

128 func ReferencedCtxVarFromService (v CtxVar, v0 *service.CtxVar) (xReferencedCtxVar,
— error) {

129 return &ReferencedCtxVar({

130 CtxVar: v,

131 ReferenceID: v0.GetReference () .GetId(),

132 }, nil

135 type ReferenceMap struct ({
136 dataTypes map[string]DataTypeType

139 type SettingsMap struct {

140 dataTypes map[string]DataTypeType

141 data map [string]any

142 }

143

144 func MakeReferenceMap () »ReferenceMap {

145 return &ReferenceMap{

146 dataTypes: make (map[string]DataTypeType),

150 func MakeSettingsMap () *SettingsMap {

151 return &SettingsMap{
152 dataTypes: make (map[string]DataTypeType),
153 data: make (map [string]any),

157 func MakeReferenceMapFrom(settingsMap xReferenceMap) »ReferenceMap {

158 m := MakeReferenceMap ()
159 m.AddAll (settingsMap)
160 return m

163 func (m x*ReferenceMap) GetDataTypeType (id string) (DataTypeType, error) {

164 dtt, ok := m.dataTypes[id]

165 if !ok {

166 return 0, errors.New("reference type not found")
167 }

168 return dtt, nil

169 }

171 func (m *SettingsMap) GetDataTypeType (id string) (DataTypeType, error) {
172 dtt, ok := m.dataTypes[id]
173 if !ok {

56

179

180

181

182

184

185

186

188

189

190

191

193
194

195

198

199

200

202

203

204

205

207

208

209

212

213

214

216

217

218

221

222

223

225

226

227

230

231

232

func (m

func (m

func (m

func (m

func (m

func (m

func (m

func (m

return 0, errors.New("reference type not found")

}
return dtt, nil

*SettingsMap) Get (id string, dataTypeType DataTypeType) (any, error)

dtt, ok := m.dataTypes[id]
if lok {
return nil, errors.New("reference type not found")
}
if dtt != dataTypeType {
return nil, ErrWrongType
}
v, ok := m.datal[id]
if !ok {
return nil, errors.New("reference not found")
}

return v, nil

*ReferenceMap) Put (id string, dataTypeType DataTypeType) {
m.dataTypes[id] = dataTypeType

*SettingsMap) Put (id string, dataTypeType DataTypeType, value any)
m.dataTypes[id] = dataTypeType
m.data[id] = value

*SettingsMap) Delete (id string) ({
delete (m.dataTypes, 1id)
delete (m.data, id)

+*ReferenceMap) Delete (id string) ({
delete (m.dataTypes, id)

*ReferenceMap) AddAll (other *ReferenceMap) {
for k, v := range other.dataTypes {
m.dataTypes[k] = v

*SettingsMap) AddAll (other xSettingsMap) {
for k, v := range other.dataTypes {
m.dataTypes[k] = v
}
for k, v := range other.data {
m.datal[k] = v

+*ReferenceMap) ToService() ([]x*service.ReferenceMapEntry, error) ({
refs := make([]xservice.ReferenceMapEntry, len(m.dataTypes))
for k, v := range m.dataTypes {
refs = append(refs, &service.ReferenceMapEntry({
Ref: &service.Reference{
Id: k,

by

57

{

{

235

236

237

239
240
241

242

262

263

264

265

266

267

268

269

271

272

273

274

275

276

277

279

280

281

282

284

285

286

288

289

290

291

DataTypeType:
})
return refs, nil
}

return refs, nil

func (m *SettingsMap) ToService ()
refs :=
for k, v := range m.data {
dtt, ok := m.dataTypes[k]
if l!ok {
return nil,
}
dt :=
bs,
if err

GetDataType (dtt)
err :=
= nil {
return nil, err
}

refs = append(refs,

([]*service.SettingsMapEntry,
make ([]xservice.SettingsMapEntry,

v.ToService (),

error) {
len (m.data))

ErrUnknownDataType

dt.Serialize (v)

&service.SettingsMapEntry{

Ref: &service.Reference{
Id: k,
}I
Value: &service.Immediate{
Value: bs,
}I
)
return refs, nil

}

return refs, nil

func ReferenceMapFromService (ms

MakeReferenceMap ()

for _, e := range ms {
m.Put (e.GetRef () .GetId (),

m =

}

return m, nil

func SettingsMapFromService (t *Template,
— (xSettingsMap, error) {
m := MakeSettingsMap ()
for _, e := range ms {
dt :=
if dt == nil {
return nil,
}
v, err :=
if err !'= nil {

return nil, err
}
m.Put (e.GetRef () .GetId (),
}

return m, nil

type ICtxVarHolder interface {
GetCtxVars () []ICtxVar

[]*service.ReferenceMapEntry)

(xReferenceMap,

DataTypeType (e.GetDataTypeType ()))

ms []xservice.SettingsMapEntry)

t.GetReferenceDataType (e.GetRef () .GetId())

ErrUnknownDataType

dt .Deserialize (e.GetValue () .GetValue ())

dt.GetType (), V)

error)

{

58

A.12 datatype bool.go

W N

o

20

21

22

23

24

25

26

27

28

29

30

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

package rules

import (
"github.com/CAS—-ual-TY/honua_local_backend/service"

var BoolDataType = &DataTypeBool({
TypeBasedDataType {
Type: DataTypeType (service.DataTypeType_BOOL),
s

type DataTypeBool struct {

TypeBasedDataType
}
func (dt DataTypeBool) Serialize (v any) ([]byte, error) {
if v, ok := v.(bool); ok {
if v {

return []byte{l}, nil
} else {
return []byte{0}, nil

return nil, ErrWrongType

func (dt DataTypeBool) Deserialize (b []byte) (any, error) {
if len(b) != 1 {
return nil, ErrWrongType

if b[0] == {
return false, nil
} else if b[0] == 1 {
return true, nil

return nil, ErrWrongType

func (dt DataTypeBool) GetValue (v ICtxVar, ctx IContext) (bool,
vl, err := v.GetValue (ctx)

if err !'= nil {
return false, err

if v2, ok := vl. (bool); ok {
return v2, nil
} else {
return false, ErrWrongCtxVarType

error)

{

59

A.13 datatype cron.go

W N

o

20

21

22

23

24

25

26

27

28

29

30

32

33

34

35

36

37

38

39

40

41

42

43

44

46

47

48

49

package rules

import (
"errors"
"github.com/CAS-ual-TY/honua_local_backend/service"
"github.com/CAS-ual-TY/simple_go_cron"

var CronDataType = &DataTypeCron({
TypeBasedDataType{
Type: DataTypeType (service.DataTypeType_CRON),
}y

type DataTypeCron struct {

TypeBasedDataType
}
func (dt DataTypeCron) Serialize (v any) ([]lbyte, error) {
if v, ok := v. (#simple_go_cron.Cron); ok {
return []byte(v.String()), nil

return nil, ErrWrongType

func (dt DataTypeCron) Deserialize (b []byte) (any, error) {
cron, err := simple_go_cron.ParseCron(string (b))
if err != nil {

return nil, errors.Join(ErrWrongType, err)

return cron, nil

func (dt DataTypeCron) GetValue (v ICtxVar, ctx IContext) (xsimple_go_cron.Cron,
=

vl, err := v.GetValue (ctx)

if err !'= nil {

return nil, err

if v2, ok := vl. (*simple_go_cron.Cron); ok {
return v2, nil

} else {
return nil, ErrWrongCtxVarType

error)

60

A.14 datatype entity.go

1 package rules

M)

3 import (

4 "github.com/CAS—-ual-TY/honua_local_backend/service"

5)

6

7 var DeviceDataType = &DataTypeDevice(

8 TypeBasedDataType{

9 Type: DataTypeType (service.DataTypeType_ ENTITY_ DEVICE),

10 by

13 type DataTypeDevice struct ({

14 TypeBasedDataType

15 }

16

17 func (dt DataTypeDevice) Serialize (v any) ([]lbyte, error) {
18 if v, ok := v.(string); ok {

19 return []byte(v), nil

20 }

21

22 return nil, ErrWrongType

23 }

24

25 func (dt DataTypeDevice) Deserialize (b []byte) (any, error) ({

26 return string(b), nil

27 }

28

20 func (dt DataTypeDevice) GetValue (v ICtxVar, ctx IContext) (string, error) {
30 vl, err := v.GetValue (ctx)

32 if err !'= nil {

33 return "", err

34 }

35

36 if v2, ok := vl. (string); ok {

37 return v2, nil

38 } else {

39 return "", ErrWrongCtxVarType
40 }

11 }

61

A.15 datatype_ int.go

1 package rules

M)

import (
"errors"
"github.com/CAS-ual-TY/honua_local_backend/service"
6 "strconv"

oW

o

9 var IntDataType = &DataTypelInt{
10 TypeBasedDataType{
11 Type: DataTypeType (service.DataTypeType_INT),

12 1,

15 type DataTypelInt struct {
16 TypeBasedDataType

19 func (dt DataTypelInt) FromString(s string) (int, error) {

20 i, err := strconv.Atoi(s)
21 if err != nil {

22 return 0, err

23 }

24 return i, nil

25 }
26
27 funec (dt DataTypelInt) ToString(v int) string {

28 return strconv.Itoa (v)

29 }

30

31 func (dt DataTypelInt) Serialize (v any) ([]lbyte, error) {
32 if v, ok := v.(int); ok {

33 return []byte(dt.ToString(v)), nil

34 }

35

36 return nil, ErrWrongType

37 }

38
30 func (dt DataTypelInt) Deserialize(b []byte) (any, error) ({

40 i, err := dt.FromString(string (b))

41

42 if err != nil {

43 return nil, errors.Join(ErrWrongType, err)
14 }

45

46 return i, nil

a7 }

48
49 func (dt DataTypelnt) GetValue (v ICtxVar, ctx IContext) (int, error) {

50 vl, err := v.GetValue (ctx)
51

52 if err !'= nil {

53 return 0, err

54 }

56 if v2, ok := vl. (int); ok {
57 return v2, nil

58 } else {

62

59

60

61

return O,

ErrWrongCtxVarType

63

A.16 datatype numeric_sensor.go

1 package rules

M)

3 import (

4 "errors"

5 "github.com/CAS-ual-TY/honua_local_backend/service"

6 "strconv"

7))

8

9 var NumericSensorDataType = &DataTypeNumericSensor({

10 DataTypelInt {

11 TypeBasedDataType{

12 Type: DataTypeType (service.DataTypeType NUMERIC_SENSOR),

13 }I

14 b

17 type DataTypeNumericSensor struct {

18 DataTypelInt

19 }

20

21 func (dt DataTypeNumericSensor) Serialize (v any) ([]byte, error) {
22 if v, ok := v.(int); ok {

23 return []byte(dt.ToString(v)), nil

24 }

25

26 return nil, ErrWrongType

27 }

28

20 func (dt DataTypeNumericSensor) Deserialize(b []byte) (any, error) {

30 i, err := dt.FromString(string (b))

31

32 if err !'= nil {

33 return nil, errors.Join(ErrWrongType, err)
34 }

35

36 return i, nil

37 }

38

30 func (dt DataTypeNumericSensor) GetValue (v ICtxVar, ctx IContext) (floaté64, error) {
40 vl, err := v.GetValue (ctx)

41

42 if err != nil {

43 return 0, err

14 }

45

16 if v2, ok := vl. (int); ok {

a7 state, err := ctx.GetDB() .GetLatestState (v2)
48 if err != nil {

49 return 0, err

50 }

51

52 current, err := strconv.ParseFloat (state.State, 64)
53 if err !'= nil {

54 return 0, err

55 }

56

57 return current, nil

58 } else {

64

59

60

61

return O,

ErrWrongCtxVarType

65

A.17 datatype sensor.go

1 package rules

M)

import (
"errors"
"github.com/CAS-ual-TY/honua_local_backend/service"
6 "strings"

oW

o

9 var SensorDataType = &DataTypeSensor{

10 DataTypelInt {

11 TypeBasedDataType{

12 Type: DataTypeType (service.DataTypeType_SENSOR),

13 }I

14 b

17 type DataTypeSensor struct {

18 DataTypelInt

19 }

20

21 func (dt DataTypeSensor) Serialize(v any) ([]byte, error) ({
22 if v, ok := v.(int); ok {

23 return []byte(dt.ToString(v)), nil

24 }

25

26 return nil, ErrWrongType

27 }

28

20 func (dt DataTypeSensor) Deserialize(b []byte) (any, error) ({

30 i, err := dt.FromString(string (b))

31

32 if err !'= nil {

33 return nil, errors.Join(ErrWrongType, err)
34 }

35

36 return i, nil

37 }

38
30 func (dt DataTypeSensor) GetValue (v ICtxVar, ctx IContext) (bool, error) {
40 vl, err := v.GetValue (ctx)

41

42 if err != nil {

43 return false, err

14 }

45

16 if v2, ok := vl. (int); ok {

a7 state, err := ctx.GetDB() .GetLatestState (v2)
48 if err != nil {

49 return false, err

50 }

51

52 current := strings.EqualFold(state.State, "on")
53

54 return current, nil

55 } else {

56 return false, ErrWrongCtxVarType

57 }

66

A.18 datatype.go

1 package rules

M)

3 import (

4 "errors"

5 "github.com/CAS-ual-TY/honua_local_backend/service"
6)

7

8 var ErrWrongType = errors.New("mistype'")

10 type DataTypeType service.DataTypeType

12 func (t DataTypeType) ToService () service.DataTypeType {
13 return service.DataTypeType (t)

16 func GetDataType (dtt DataTypeType) IDataType {

17 switch dtt.ToService() {

18 case service.DataTypeType_BOOL:

19 return BoolDataType

20 case service.DataTypeType_ INT:

21 return IntDataType

22 case service.DataTypeType_CRON:

23 return CronDataType

24 case service.DataTypeType_NUMERIC_SENSOR:
25 return NumericSensorDataType

26 case service.DataTypeType_SENSOR:

27 return SensorDataType

28 case service.DataTypeType_ ENTITY_ DEVICE:
29 return DeviceDataType

30 }

31 return nil

32}
33
34 type IDataType interface {

35 GetType () DataTypeType

36 Serialize (v any) ([]byte, error)
37 Deserialize (b []byte) (any, error)
38 }

39

40 type IImmediateDataType interface {
41 GetValues (ctx IContext) [Jany
42 }

43

44 type DataType struct{}

45

46 type TypeBasedDataType struct {

a7 DataType
48 Type DataTypeType
49 }

50
51 func (t TypeBasedDataType) GetType () DataTypeType {
52 return t.Type

53 }

67

A.19 rule.go

1 package rules

M)

import (
"github.com/CAS—-ual-TY/honua_local_backend/service"
"time"

oW

o

8 type Rule struct {

9 RuleName string

10 Condition ICondition
11 Actions [1IAction
12 InitialActive bool

15 type RulelInstance struct ({

16 *Rule
17 RuleID int
18 active bool

20
21 func (r *Rule) MakeInstance (RuleID int) *RuleInstance {

22 return &RulelInstance{

23 Rule: r,

24 RuleID: RulelD,

25 active: r.InitialActive,

26 }

27 }

28

29 func (r xRule) ToService () (*service.Rule, error) ({
30 actions := make([]*service.Action, len(r.Actions), len(r.Actions))
31 for i, a := range r.Actions {

32 al, err := a.ToService()

33 if err != nil {

34 return nil, err

35 }

36 actions[i] = al

37 }

38 c, err := r.Condition.ToService /()

39 if err != nil {

40 return nil, err

41 }

42 return &service.Rule{

43 Condition: c,

14 Actions: actions,

45 InitialActive: r.InitialActive,
46 }, nil

a7 }

48
19 func RuleFromService (r xservice.Rule) (*xRule, error) ({

50 condition, err := ConditionFromService (r.Condition)

51 if err != nil {

52 return nil, err

53 }

54 actions := make([]IAction, len(r.GetActions()), len(r.GetActions()))
55 for i, a := range r.GetActions () {

56 al, err := ActionFromService (a)

57 if err != nil {

58 return nil, err

68

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

101

func

func

func

(r

(r

(r

}
actions[i] = al
}

return &Rule({

RuleName: r.GetRuleName (),
Condition: condition,
Actions: actions,

InitialActive: r.GetInitialActive(),

}, nil

*RuleInstance) IsActive () bool {
return r.active

*RuleInstance) SetActive (active bool)

r.active = active

*RuleInstance) Execute(ctx IContext,

if !r.IsActive() {
return nil

{

t time.Time) error {

cond, err := r.Condition.CheckCondition(ctx, t)

if err !'= nil {
return err

if !cond {
return nil

for _, action := range r.Actions {
err := action.Execute (ctx,
if err != nil {

return err

return nil

t)

69

A.20 state.go

1 package rules

M)

3 import "errors"

4

5 type IState interface {

6 GetStringState () string
7 GetBoolState () bool

10 type State bool

12 const (
13 ON = State(true)
14 OFF State (false)

17 func (s State) GetStringState() string {

18 if s {

19 return "on"
20 } else {

21 return "off"
22 }

23 }

24

25 func (s State) GetBoolState () bool {
26 return bool (s)

27 }

28

20 func FromStringState(state string) (State, error) ({

30 if state == ON.GetStringState() {

31 return ON, nil

32 } else if state == OFF.GetStringState() {
33 return OFF, nil

34 }

35 return OFF, errors.New("Invalid state™)

36 }

70

A.21 template manager.go

20

21

22

23

24

25

26

27

28

29

30

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

package rules

import (
"context"
"errors"
"github.com/CAS-ual-TY/honua_local_backend/database"
"github.com/CAS-ual-TY/honua_local_backend/server"
"github.com/CAS-ual-TY/honua_local_backend/service"
"SyﬂC"
"time"

var ErrUnknownTemplate = errors.New ("unknown template™)
var ErrUnknownTemplatelInstance = errors.New ("unknown template instance™)

type TemplateManager struct ({

Templates []+Template
ActiveInstances []*TemplateInstance
lastTime time.Time

mt sync.RWMutex

func MakeTemplateManager () *TemplateManager {
return &TemplateManager
Templates: make ([]+*Template, 0),
ActiveInstances: make ([]+*TemplateInstance, 0),
lastTime: time.Now () .Truncate (time.Second),
mt : sync.RWMutex{},

func (tpm *TemplateManager) AddTemplate (t *Template) int ({
tpm.mt.Lock ()
defer tpm.mt.Unlock ()

id := len(tpm.Templates)

tpm.Templates = append(tpm.Templates, t)
t.TemplateID = uint32(id)

return id

func (tpm *TemplateManager) GetTemplate (id0 uint32) (xTemplate, error) {
tpm.mt .RLock ()
defer tpm.mt.RUnlock ()

id := int (1dO0)
if id >= len(tpm.Templates) || id < 0 {
return nil, ErrUnknownTemplate

}
t := tpm.Templates[id]
if t == nil {
return nil, ErrUnknownTemplate

}

return t, nil

func (tpm *TemplateManager) DeleteTemplate (id0 uint32) (xTemplate, error)

71

59 tpm.mt .Lock ()

60 defer tpm.mt.Unlock ()

61

62 id := int (id0)

63 if id >= len(tpm.Templates) || id < 0 {
64 return nil, ErrUnknownTemplate
65 }

66 t := tpm.Templates[id]

67

68 for _, ti := range tpm.ActivelInstances {
69 if ti.Template == t {

70 return nil, errors.New("template still in use")
71 }

72 }

73

74 if t == nil {

75 return nil, ErrUnknownTemplate
76 }

77 tpm.Templates[id] = nil

78 return t, nil

79 }

80
s1 func (tpm xTemplateManager) OverrideTemplate (t xTemplate) (xTemplate, error) ({

82 tpm.mt .RLock ()

83 defer tpm.mt.RUnlock ()

84

85 id := int (t.TemplatelD)

86 if id >= len(tpm.Templates) || id < 0 {
87 return nil, ErrUnknownTemplate
88 }

89 prev := tpm.Templates[id]

90 tpm.Templates[id] = t

91 return prev, nil

92 }
93
94 func (tpm xTemplateManager) AddTemplatelInstance(t xTemplateInstance) int {

95 tpm.mt.Lock ()

96 defer tpm.mt.Unlock ()

97

98 id := len(tpm.Templates)

99 tpm.ActivelInstances = append(tpm.Activelnstances, t)

100 t.InstancelID = uint32(id)

101 return id

102 }

103

104 func (tpm *TemplateManager) GetTemplatelInstance (id0 uint32) (xTemplatelInstance, error)
—

105 tpm.mt .RLock ()

106 defer tpm.mt.RUnlock ()

107

108 id := 1int (1d0)

109 if id >= len(tpm.ActiveInstances) || id < 0 {

110 return nil, ErrUnknownTemplateInstance

111 }

112 t := tpm.Activelnstances[id]

113 if t == nil {

114 return nil, ErrUnknownTemplateInstance

115 }

116 return t, nil

72

119

131
132
133
134

135

136

137

148

161

162

163

164

166

167

168

170

171

172

173

func

—

func

—

func

—

func

(tpm *TemplateManager)
(*TemplateInstance, error) {

(tpm *TemplateManager) DeleteTemplatelInstance (id0 uint32) (xTemplateInstance,
error) {

tpm.mt .Lock ()
defer tpm.mt.Unlock ()

id := int (id0)
if id >= len(tpm.ActivelInstances) || id < 0 {
return nil, ErrUnknownTemplateInstance
}
t := tpm.Activelnstances[id]
if t == nil {
return nil, ErrUnknownTemplateInstance
}
tpm.ActiveInstances[id] = nil
return t, nil

(tpm *TemplateManager) OverrideTemplatelInstance (t xTemplatelInstance)
(xTemplateInstance, error) {

tpm.mt .RLock ()
defer tpm.mt.RUnlock ()

id := int (t.InstancelD)

if id >= len(tpm.ActiveInstances) || id < 0 {
return nil, ErrUnknownTemplateInstance

}

prev := tpm.ActivelInstances[id]

tpm.ActivelInstances[id] = t

return prev, nil

tpm.mt.RLock ()
defer tpm.mt.RUnlock ()

template, err := tpm.GetTemplate (t.TemplateId)
if err !'= nil {
return nil, err
}
settingsMap, err := SettingsMapFromService (template, t.Settings)
if err != nil {
return nil, err
}
ti := template.MakeInstance (t.TemplateInstanceName, settingsMap)
return ti, nil

(tpm *TemplateManager) Tick (server xserver.HonuaServer) error

tpm.mt .Lock ()
defer tpm.mt.Unlock ()

t := time.Now () .Truncate (time.Second)

for ; tpm.lastTime.Before(t); tpm.lastTime.Add(time.Second) {

for _, ti := range tpm.ActiveInstances {
if ti.active {
err := ti.Execute(t, server)
if err != nil {

73

TemplateInstanceFromService (t *service.TemplateInstance)

return err

return nil

func (tpm *TemplateManager) GetAllTemplates () []*Template {
tpm.mt.RLock ()
defer tpm.mt.RUnlock ()

templates := make([]*Template, 0)
for _, t := range tpm.Templates {
if t !'= nil {

templates = append(templates, t)

}

return templates

func (tpm *TemplateManager) GetAllTemplateInstances() []xTemplateInstance {
tpm.mt .RLock ()
defer tpm.mt.RUnlock ()

tis := make([]*TemplateInstance, 0)
for _, t := range tpm.Activelnstances {
if t != nil {

tis = append(tis, t)

}

return tis

func (tpm *TemplateManager) SaveTemplateInstances (ctx context.Context, db
— xdatabase.HonuaDB) error {

tpm.mt .RLock ()

defer tpm.mt.RUnlock ()

instances := make ([]*service.TemplateInstance, len(tpm.ActivelInstances))
for i, t := range tpm.Activelnstances {

tl, err := t.ToService()

if err !'= nil {

return err
}
instances[i] = tl1
}

return db.SaveTemplateInstances (ctx, instances)

func (tpm *TemplateManager) CleanIDs () {
tpm.mt.Lock ()
defer tpm.mt.Unlock ()

ts := make([]+Template, len(tpm.Templates))
1 := uint32(0)
for _, t := range tpm.Templates {
if t !'= nil {
ts[i] =t

74

234 t.TemplateID = 1

235 i++

236 }

237 }

238 tpm.Templates = ts[:1]

239

240 tis := make([]*TemplateInstance, len (tpm.Activelnstances))
241 i = uint32(0)

242 for _, t := range tpm.Activelnstances {
243 if t != nil {

244 tis[i] = t

245 t.InstancelID = i

246 i++

247 }

248 }

249 tpm.ActivelInstances = tis[:1i]

250 }

252 func (tpm *TemplateManager) SaveTemplates (ctx context.Context, db xdatabase.HonuaDB)
— error

253 instances := make ([]*service.TemplateInstance, len(tpm.ActiveInstances))
254 for i, t := range tpm.Activelnstances {

255 tl, err := t.ToService()

256 if err !'= nil {

257 return err

258 }

259 instances[i] = tl1

260 }

261 return db.SaveTemplateInstances (ctx, instances)

262 }

263

264 func (tpm x*TemplateManager) SaveTime (ctx context.Context, db xdatabase.HonuaDB) error
= |

265 return db.SaveTemplatesTime (ctx, tpm.lastTime)

266 }

267

268 func (tpm *TemplateManager) SaveAll (ctx context.Context, db *database.HonuaDB) error ({

269 err := tpm.SaveTemplates (ctx, db)

270 if err !'= nil {

271 return err

272 }

273 err = tpm.SaveTemplateInstances (ctx, db)
274 if err != nil {

275 return err

276 }

277 return tpm.SaveTime (ctx, db)

278 }

279
280 func (tpm *TemplateManager) LoadAll (ctx context.Context, db *database.HonuaDB) error ({

281 ts0, err := db.LoadTemplates (ctx)
282 if err != nil {

283 return err

284 }

285 ts := make([]*Template, len(ts0))
286 for i, t0 := range tsO {

287 t, err := TemplateFromService (tO0)
288 if err !'= nil {

289 return err

290 }

201 ts[i] =t

75

293

294

295

297

298

299

300

302

303

304

306

307

308

309

tis0, err := db.LoadTemplatelInstances (ctx)

if err != nil {
return err

}

tis := make([]*TemplateInstance, len(tis0))

for i, t0 := range tisO {
t, err := tpm.TemplateInstanceFromService (t0)
if err != nil {

return err

tim, err := db.LoadTemplatesTime (ctx)

tpm.Templates = ts
tpm.ActivelInstances = tis
tpm.lastTime = tim

return nil

76

A.22 template.go

W N

o

20

21

22

23

24

25

26

27

28

29

30

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

package rules

import

"errors"
"github.com/CAS-ual-TY/honua_local_backend/server"
"github.com/CAS-ual-TY/honua_local_backend/service"
"time"

type Template struct ({

TemplateID uint32
TemplateName string

Rules [1*Rule
references *ReferenceMap

type TemplatelInstance struct {

func

func

(t

(t

Template +*Template
InstancelD uint32
InstanceName string

Rules [I]*RuleInstance
Settings *SettingsMap
active bool
+*Template) ToService() (*service.Template, error) {
rules := make ([]*service.Rule, len(t.Rules))
for i, r := range t.Rules {
rl, err := r.ToService()
if err != nil {

return nil, err
}
rules[i] = rl
}
return &service.Template(
TemplateName: t.TemplateName,

Rules: rules,
}, nil
*TemplateInstance) ToService() (xservice.TemplateInstance, error)
settings, err := t.Settings.ToService()
if err !'= nil {

return nil, err

}

return &service.TemplatelInstance(

TemplateId: t.Template.TemplatelD,
TemplateInstancelId: t.InstancelD,
TemplateInstanceName: t.InstanceName,
Settings: settings,

Active: t.active,

}, nil

func TemplateFromService (t xservice.Template) (*Template, error) {

rules := make ([]*Rule, len(t.Rules))
for i, r := range t.Rules {
rl, err := RuleFromService (r)

7

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

T

78

79

80

81

82

83

84

85

86

87

88

89

91

92

93

94

95

96

97

98

99

100

101

102

104

105

106

107

109

110

111

114

115

116

if err != nil {
return nil, err

}

rules[i] = rl
}
refMap, err := ReferenceMapFromService (t.GetReferences())
if err != nil {

return nil, err

}

return &Template(

TemplateID: t.TemplateId,
TemplateName: "",

Rules: rules,
references: refMap,

}, nil

func (t +Template) MakelInstance (instanceName string,
— *TemplateInstance {

rules := make ([]*RulelInstance, len(t.Rules))
for i, rule := range t.Rules {
rules[i1] = rule.MakelInstance (1)

}

return &TemplateInstance(

Template: t,
InstanceName: instanceName,
Rules: rules,
Settings: settings,
active: true,

settings *SettingsMap)

func (t +Template) GetReferenceDataType (id string) IDataType {

dtt, err := t.references.GetDataTypeType (id)
if err !'= nil {
return nil
}
return GetDataType (dtt)

func (tp *TemplateInstance) GetRulelInstance (ruleID uint32) (*Rulelnstance,
if rulelID >= uint32(len(tp.Rules)) {
return nil, errors.New("invalid rule id")
}
rule := tp.Rules[rulelD]
if rule == nil {
return nil, errors.New ("unknown rule id")
}
return rule, nil
}
func (tp *TemplateInstance) EnableRule (rulelID uint32) error {

rule, err := tp.GetRulelInstance (rulelD)
if err != nil {
return err
}
rule.SetActive (true)
return nil

78

error)

{

118 func (tp *TemplatelInstance) DisableRule (ruleID uint32) error {

119 rule, err := tp.GetRulelnstance (rulelD)
120 if err !'= nil {

121 return err

122 }

123 rule.SetActive (false)

124 return nil

127 func (tp *TemplatelInstance) GetReference(id string, dataTypeType DataTypeTlype) (any,
— error) {
128 return tp.Settings.Get (id, dataTypeType)

129 }

131 func (tp *TemplatelInstance) Execute(t time.Time, server xserver.HonuaServer) error ({

132 if !tp.IsActive() {

133 return nil

134 }

135

136 ctx := &Context{template: tp, server: server}
137

138 // prevent side effects. Example:

139 // Rule[i] is active, Rule[i] is inactive
140 // Rule[i] activates Rule[i+1]

141 // Rule[i+1l] is now executed but should not
142 activeRules := make ([]bool, len(tp.Rules))
143 for i, rule := range tp.Rules {

144 activeRules[1i] = rule.IsActive ()

145 }

146

147 for i, rule := range tp.Rules {

148 if activeRules[i] {

149 err := rule.Execute(ctx, t)
150 if err != nil {

151 return err

152 }

153 }

154 }

155 return nil

158 func (tp *TemplatelInstance) IsActive() bool ({

159 return tp.active

160 }

161

162 func (tp *TemplatelInstance) SetActive (active bool) {
163 tp.active = active

164 }

79

A.23 util.go

1 package rules

M)

3 import (

4 "errors"

5 "github.com/CAS-ual-TY/honua_local_backend/service"
6)

7

8 wvar ErrUnknownType = errors.New ("unknown type")

10 type ComparisonType int

12 const (

13 EQ ComparisonType = iota // Equals

14 NQ // Not Equals

15 GT // Greater Than

16 GE // Greater or Equal
17 LT // Less Than

18 LE // Less or Equal

19)

20

21 func (¢ ComparisonType) Comparelnt (x, y int) bool ({
22 switch c {

23 case EQ:

24 return x ==y
25 case NQ:

26 return x != vy
27 case GT:

28 return x > y
29 case GE:

30 return x >=y
31 case LT:

32 return x < y
33 case LE:

34 return x <=y
35 }

36

37 return false

38 }

39
40 func (c ComparisonType) CompareFloat (x, y float64) bool {
41 switch c {

42 case EQ:

43 return x ==
44 case NQ:

45 return x != vy
46 case GT:

a7 return x > y
48 case GE:

49 return x >= vy
50 case LT:

51 return x < y
52 case LE:

53 return x <=y
54 }

55

56 return false

57 }

58

80

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

type Optional[T any] struct {

Value *T

}

func (o Optional[T]) IsPresent() bool {
return o.Value != nil

func (o Optional[T]) Get () T {
return xo.Value

func (o Optional[T]) OrElse(def T) T {
if o.vValue == nil {
return def

return xo.Value

func (o Optional[T]) IfPresent(f func(T)) {
if o.Value != nil {
f(xo.Value)

func (o Optional[T]) IfPresentOrElseThrow(f func(T)) error ({

if o.Value != nil {
f(xo.Value)
return nil

return errors.New("value is not present™)

type OptionalFloat struct {
Optional [float64]

func (o xOptionalFloat) ToService () xservice.OptionalFloat {

if o.IsPresent () {
return &service.OptionalFloat{
Valid: true,
Value: float32(xo.Value),
}
} else {
return &service.OptionalFloat{
Valid: false,
Value: O,

func OptionalFloatFromService (o *service.OptionalFloat)
if o.valid {
v := float6d (o.Value)
return OptionalFloat{
Optional [float64] {
Value: &v,
}I

81

OptionalFloat {

} else {

}

return OptionalFloat{
Optional[float64] {
Value: nil,
}I

82

